YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Credibility Assessment of Machine Learning in a Manufacturing Process Application

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2021:;volume( 006 ):;issue: 003::page 031007-1
    Author:
    Banyay, Gregory A.
    ,
    Worrell, Clarence L.
    ,
    Sidener, Scott E.
    ,
    Kaizer, Joshua S.
    DOI: 10.1115/1.4051717
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.
    • Download: (2.808Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Credibility Assessment of Machine Learning in a Manufacturing Process Application

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278014
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorBanyay, Gregory A.
    contributor authorWorrell, Clarence L.
    contributor authorSidener, Scott E.
    contributor authorKaizer, Joshua S.
    date accessioned2022-02-06T05:26:00Z
    date available2022-02-06T05:26:00Z
    date copyright7/27/2021 12:00:00 AM
    date issued2021
    identifier issn2377-2158
    identifier othervvuq_006_03_031007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278014
    description abstractWe present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCredibility Assessment of Machine Learning in a Manufacturing Process Application
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4051717
    journal fristpage031007-1
    journal lastpage031007-11
    page11
    treeJournal of Verification, Validation and Uncertainty Quantification:;2021:;volume( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian