YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flexural Waves in Elastically Coupled Telescopic Metabeams

    Source: Journal of Vibration and Acoustics:;2021:;volume( 143 ):;issue: 006::page 061009-1
    Author:
    Prasad, Rajan
    ,
    Banerjee, Arnab
    DOI: 10.1115/1.4050809
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper investigates the flexural wave propagation through elastically coupled telescopic metabeams. It is assumed that the metabeam is formed by connecting successive beams with each other using distributed elastic springs. The equations of motion of a representative unit of the above-mentioned novel structural form are established by dividing it into three constitutive components that are two side beams, modeled employing the Euler–Bernoulli beam equation and an elastically coupled articulated distributed spring connection (ECADSC) at middle. ECADSC is modeled as parallel double beams connected by distributed springs. The underlying mechanics of this system in context of elastic wave propagation is unique when compared with the existing state of art in which local resonators, inertial amplifiers, etc. are attached to the beam to widen the attenuation bandwidth. The dynamic stiffness matrix is employed in conjunction with Bloch–Floquet theorem to derive the band structure of the system. It is identified that the coupling coefficient of the distributed spring layer and length ratio between the side beams and the elastic coupling plays the key role in the wave attenuation. It has been perceived that a considerable widening of the attenuation bandgap in the low frequency can be achieved while the elastically distributed springs are weak and distributed in a small stretch. Specifically, 140% normalized bandgap can be obtained only by tuning the stiffness and the length ratio without adding any added masses or resonators to the structure.
    • Download: (627.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flexural Waves in Elastically Coupled Telescopic Metabeams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278006
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorPrasad, Rajan
    contributor authorBanerjee, Arnab
    date accessioned2022-02-06T05:25:40Z
    date available2022-02-06T05:25:40Z
    date copyright5/4/2021 12:00:00 AM
    date issued2021
    identifier issn1048-9002
    identifier othervib_143_6_061009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278006
    description abstractThis paper investigates the flexural wave propagation through elastically coupled telescopic metabeams. It is assumed that the metabeam is formed by connecting successive beams with each other using distributed elastic springs. The equations of motion of a representative unit of the above-mentioned novel structural form are established by dividing it into three constitutive components that are two side beams, modeled employing the Euler–Bernoulli beam equation and an elastically coupled articulated distributed spring connection (ECADSC) at middle. ECADSC is modeled as parallel double beams connected by distributed springs. The underlying mechanics of this system in context of elastic wave propagation is unique when compared with the existing state of art in which local resonators, inertial amplifiers, etc. are attached to the beam to widen the attenuation bandwidth. The dynamic stiffness matrix is employed in conjunction with Bloch–Floquet theorem to derive the band structure of the system. It is identified that the coupling coefficient of the distributed spring layer and length ratio between the side beams and the elastic coupling plays the key role in the wave attenuation. It has been perceived that a considerable widening of the attenuation bandgap in the low frequency can be achieved while the elastically distributed springs are weak and distributed in a small stretch. Specifically, 140% normalized bandgap can be obtained only by tuning the stiffness and the length ratio without adding any added masses or resonators to the structure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlexural Waves in Elastically Coupled Telescopic Metabeams
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4050809
    journal fristpage061009-1
    journal lastpage061009-9
    page9
    treeJournal of Vibration and Acoustics:;2021:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian