YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Study on Reviving Abandoned Oil Reservoirs by In Situ Combustion Without CO2 Production While Recovering Both Oil and Heat

    Source: Journal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 008::page 082902-1
    Author:
    Han, Yun
    ,
    Li, Kewen
    ,
    Jia, Lin
    DOI: 10.1115/1.4050344
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A large number of oil wells have been or will be abandoned around the world. Yet, a very large amount of oil and energy is left behind inside the rocks in abandoned reservoirs because of technological and economic limitations. The residual oil saturation is usually more than 40%, and in shale reservoirs it can be more than 90%. There have been many enhanced oil recovery methods developed to tap the residual oil and improve the oil recovery. Interestingly, a concept has been proposed to transfer abandoned oil and gas reservoirs into exceptional enhanced geothermal reservoirs by oxidizing the residual oil with injected air (Li and Zhang, 2008, “Exceptional Enhanced Geothermal Systems From Oil and Gas Reservoirs,” 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA). This methodology was referred to as an exceptional enhanced geothermal system (EEGS). However, zero CO2 production has not been achieved during the process of EEGS. To this end, numerical models of EEGS in abandoned oil reservoirs configured with vertical wells were established in the present study. Numerical simulations in different well configurations were conducted. The effects of well distance, perforation position, and formation permeability on the CO2 production and the reservoir temperature have been investigated. The numerical simulation results showed that when the depth difference between the production and the injection well perforation positions reaches a specific value, the daily CO2 production rate could be kept at almost zero for over 50 years or even permanently while producing oil and thermal energy continuously. This implies that we realized the concept of EEGS with no CO2 successfully using numerical simulation.
    • Download: (1.551Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Study on Reviving Abandoned Oil Reservoirs by In Situ Combustion Without CO2 Production While Recovering Both Oil and Heat

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277930
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHan, Yun
    contributor authorLi, Kewen
    contributor authorJia, Lin
    date accessioned2022-02-05T22:39:42Z
    date available2022-02-05T22:39:42Z
    date copyright3/17/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_143_8_082902.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277930
    description abstractA large number of oil wells have been or will be abandoned around the world. Yet, a very large amount of oil and energy is left behind inside the rocks in abandoned reservoirs because of technological and economic limitations. The residual oil saturation is usually more than 40%, and in shale reservoirs it can be more than 90%. There have been many enhanced oil recovery methods developed to tap the residual oil and improve the oil recovery. Interestingly, a concept has been proposed to transfer abandoned oil and gas reservoirs into exceptional enhanced geothermal reservoirs by oxidizing the residual oil with injected air (Li and Zhang, 2008, “Exceptional Enhanced Geothermal Systems From Oil and Gas Reservoirs,” 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA). This methodology was referred to as an exceptional enhanced geothermal system (EEGS). However, zero CO2 production has not been achieved during the process of EEGS. To this end, numerical models of EEGS in abandoned oil reservoirs configured with vertical wells were established in the present study. Numerical simulations in different well configurations were conducted. The effects of well distance, perforation position, and formation permeability on the CO2 production and the reservoir temperature have been investigated. The numerical simulation results showed that when the depth difference between the production and the injection well perforation positions reaches a specific value, the daily CO2 production rate could be kept at almost zero for over 50 years or even permanently while producing oil and thermal energy continuously. This implies that we realized the concept of EEGS with no CO2 successfully using numerical simulation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling Study on Reviving Abandoned Oil Reservoirs by In Situ Combustion Without CO2 Production While Recovering Both Oil and Heat
    typeJournal Paper
    journal volume143
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4050344
    journal fristpage082902-1
    journal lastpage082902-9
    page9
    treeJournal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian