YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Evaluation of Volatile Organic Compound Quantification Methods for Reciprocating Natural Gas Engines

    Source: Journal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 007::page 072303-1
    Author:
    King, Brenna
    ,
    Venkitachalam, Mukund
    ,
    Olsen, Daniel
    DOI: 10.1115/1.4050005
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Compressor stations utilizing large-bore natural gas engines transport natural gas through pipelines worldwide. One emission class regulated by the Environmental Protection Agency (EPA) is volatile organic compounds (VOCs), which are nonmethane, nonethane, nonaldehyde hydrocarbons. The combination of a gas chromatograph (GC) and a flame ionization detector (FID) can measure VOCs, following EPA Method 18/25A. The Fourier transform infrared spectrometer (FTIR) also measures VOCs, following EPA Method 320. Multiple VOC calculation techniques are utilized, some combining measurements from separate analyzers. Two basic methods of extracting exhaust gas are direct extraction and Tedlar bag sampling. In this study, various VOC quantification methods are evaluated. Exhaust gas was sampled from a Cooper-Bessemer GMV lean-burn engine and a Caterpillar G3304 rich-burn engine. The GMV was tested in three configurations: open chamber spark ignition, precombustion chamber (PCC) ignition, and PCC ignition with high-pressure fuel injection. Ignition timing sweeps were performed on both engines, and a fuel variability test was performed on the GMV. Results showed that the Gasmet and MKS FTIRs’ (Method 320) VOC measurements deviate significantly from the HP GC when measuring low molar concentrations, albeit below regulatory limits. A common VOC quantification approach is subtracting the sum of methane and ethane FTIR measurements from a total hydrocarbon measurement utilizing a FID. This method produces uncertainties of 190% and overestimates VOC concentration by an average of 100%. The Tedlar bag sampling method produced VOC measurements within −2% of the direct extraction method.
    • Download: (1005.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Evaluation of Volatile Organic Compound Quantification Methods for Reciprocating Natural Gas Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277908
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorKing, Brenna
    contributor authorVenkitachalam, Mukund
    contributor authorOlsen, Daniel
    date accessioned2022-02-05T22:39:03Z
    date available2022-02-05T22:39:03Z
    date copyright2/26/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_143_7_072303.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277908
    description abstractCompressor stations utilizing large-bore natural gas engines transport natural gas through pipelines worldwide. One emission class regulated by the Environmental Protection Agency (EPA) is volatile organic compounds (VOCs), which are nonmethane, nonethane, nonaldehyde hydrocarbons. The combination of a gas chromatograph (GC) and a flame ionization detector (FID) can measure VOCs, following EPA Method 18/25A. The Fourier transform infrared spectrometer (FTIR) also measures VOCs, following EPA Method 320. Multiple VOC calculation techniques are utilized, some combining measurements from separate analyzers. Two basic methods of extracting exhaust gas are direct extraction and Tedlar bag sampling. In this study, various VOC quantification methods are evaluated. Exhaust gas was sampled from a Cooper-Bessemer GMV lean-burn engine and a Caterpillar G3304 rich-burn engine. The GMV was tested in three configurations: open chamber spark ignition, precombustion chamber (PCC) ignition, and PCC ignition with high-pressure fuel injection. Ignition timing sweeps were performed on both engines, and a fuel variability test was performed on the GMV. Results showed that the Gasmet and MKS FTIRs’ (Method 320) VOC measurements deviate significantly from the HP GC when measuring low molar concentrations, albeit below regulatory limits. A common VOC quantification approach is subtracting the sum of methane and ethane FTIR measurements from a total hydrocarbon measurement utilizing a FID. This method produces uncertainties of 190% and overestimates VOC concentration by an average of 100%. The Tedlar bag sampling method produced VOC measurements within −2% of the direct extraction method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Evaluation of Volatile Organic Compound Quantification Methods for Reciprocating Natural Gas Engines
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4050005
    journal fristpage072303-1
    journal lastpage072303-13
    page13
    treeJournal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian