YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Machine Learning Approach to Predicting the Heat Convection and Thermodynamics of an External Flow of Hybrid Nanofluid

    Source: Journal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 007::page 070902-1
    Author:
    Alizadeh, Rasool
    ,
    Abad, Javad Mohebbi Najm
    ,
    Fattahi, Abolfazl
    ,
    Mohebbi, Mohamad Reza
    ,
    Doranehgard, Mohammad Hossein
    ,
    Li, Larry K. B.
    ,
    Alhajri, Ebrahim
    ,
    Karimi, Nader
    DOI: 10.1115/1.4049454
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study numerically investigates heat convection and entropy generation in a hybrid nanofluid (Al2O3–Cu–water) flowing around a cylinder embedded in porous media. An artificial neural network is used for predictive analysis, in which numerical data are generated to train an intelligence algorithm and to optimize the prediction errors. Results show that the heat transfer of the system increases when the Reynolds number, permeability parameter, or volume fraction of nanoparticles increases. However, the functional forms of these dependencies are complex. In particular, increasing the nanoparticle concentration is found to have a nonmonotonic effect on entropy generation. The simulated and predicted data are subjected to particle swarm optimization to produce correlations for the shear stress and Nusselt number. This study demonstrates the capability of artificial intelligence algorithms in predicting the thermohydraulics and thermodynamics of thermal and solutal systems.
    • Download: (971.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Machine Learning Approach to Predicting the Heat Convection and Thermodynamics of an External Flow of Hybrid Nanofluid

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277899
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorAlizadeh, Rasool
    contributor authorAbad, Javad Mohebbi Najm
    contributor authorFattahi, Abolfazl
    contributor authorMohebbi, Mohamad Reza
    contributor authorDoranehgard, Mohammad Hossein
    contributor authorLi, Larry K. B.
    contributor authorAlhajri, Ebrahim
    contributor authorKarimi, Nader
    date accessioned2022-02-05T22:38:43Z
    date available2022-02-05T22:38:43Z
    date copyright1/15/2021 12:00:00 AM
    date issued2021
    identifier issn0195-0738
    identifier otherjert_143_7_070902.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277899
    description abstractThis study numerically investigates heat convection and entropy generation in a hybrid nanofluid (Al2O3–Cu–water) flowing around a cylinder embedded in porous media. An artificial neural network is used for predictive analysis, in which numerical data are generated to train an intelligence algorithm and to optimize the prediction errors. Results show that the heat transfer of the system increases when the Reynolds number, permeability parameter, or volume fraction of nanoparticles increases. However, the functional forms of these dependencies are complex. In particular, increasing the nanoparticle concentration is found to have a nonmonotonic effect on entropy generation. The simulated and predicted data are subjected to particle swarm optimization to produce correlations for the shear stress and Nusselt number. This study demonstrates the capability of artificial intelligence algorithms in predicting the thermohydraulics and thermodynamics of thermal and solutal systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Machine Learning Approach to Predicting the Heat Convection and Thermodynamics of an External Flow of Hybrid Nanofluid
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4049454
    journal fristpage070902-1
    journal lastpage070902-11
    page11
    treeJournal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian