YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Supercritical Flow and Shape of Flip Bucket Spillways on Coefficients of Dynamic Pressure

    Source: Journal of Energy Resources Technology:;2020:;volume( 143 ):;issue: 006::page 061301-1
    Author:
    Vatandoust, Hessam
    ,
    Yarmohammadi, Hamidreza
    ,
    Kavianpour, Mohammadreza
    DOI: 10.1115/1.4048524
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pressure fluctuation is one of the major turbulent flow characteristics. It may cause crucial problems for hydraulic structures. This research is based on experimental studies, and it focuses on the measurements of pressure fluctuations along flip bucket spillways with different geometrical characteristics. The function of the flip bucket spillway is discharging floods from reservoir dams which are energy storage source measurements of dynamic pressures on three different models of flip buckets that were performed for this investigation. Pressure fluctuation of the flip buckets have been measured within a range of Froude numbers from 5 to 13 (Fr = u/gy, where u is the flow speed, y is the depth, and g is 9.81 m/s2). Statistical characteristics of pressure fluctuations, the location, and the values of maximum and minimum fluctuations have also supplemented the study. The results show that the coefficients of pressure fluctuations (Cp = RMS/(0.5(u2/g)) where RMS is the root-mean-square of pressure fluctuation, u is the flow speed, and g is 9.81 m/s2) reduce as the Froude number (Fr) of flow increases, except a maximum Froude number. Pressure coefficients increase along the flip bucket with incremental mutations in the transformation area of the flip bucket. In the middle part of the flip bucket spillway, pressure coefficient values decrease. Additionally, as B/r (B is the width of the flip bucket and r is the radius of the flip bucket) ratio increases, pressure coefficients become larger and this process continues along the flip bucket.
    • Download: (1.628Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Supercritical Flow and Shape of Flip Bucket Spillways on Coefficients of Dynamic Pressure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277866
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorVatandoust, Hessam
    contributor authorYarmohammadi, Hamidreza
    contributor authorKavianpour, Mohammadreza
    date accessioned2022-02-05T22:37:32Z
    date available2022-02-05T22:37:32Z
    date copyright10/14/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_143_6_061301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277866
    description abstractPressure fluctuation is one of the major turbulent flow characteristics. It may cause crucial problems for hydraulic structures. This research is based on experimental studies, and it focuses on the measurements of pressure fluctuations along flip bucket spillways with different geometrical characteristics. The function of the flip bucket spillway is discharging floods from reservoir dams which are energy storage source measurements of dynamic pressures on three different models of flip buckets that were performed for this investigation. Pressure fluctuation of the flip buckets have been measured within a range of Froude numbers from 5 to 13 (Fr = u/gy, where u is the flow speed, y is the depth, and g is 9.81 m/s2). Statistical characteristics of pressure fluctuations, the location, and the values of maximum and minimum fluctuations have also supplemented the study. The results show that the coefficients of pressure fluctuations (Cp = RMS/(0.5(u2/g)) where RMS is the root-mean-square of pressure fluctuation, u is the flow speed, and g is 9.81 m/s2) reduce as the Froude number (Fr) of flow increases, except a maximum Froude number. Pressure coefficients increase along the flip bucket with incremental mutations in the transformation area of the flip bucket. In the middle part of the flip bucket spillway, pressure coefficient values decrease. Additionally, as B/r (B is the width of the flip bucket and r is the radius of the flip bucket) ratio increases, pressure coefficients become larger and this process continues along the flip bucket.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigation of Supercritical Flow and Shape of Flip Bucket Spillways on Coefficients of Dynamic Pressure
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4048524
    journal fristpage061301-1
    journal lastpage061301-11
    page11
    treeJournal of Energy Resources Technology:;2020:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian