YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Childbirth Computational Models: Characteristics and Applications

    Source: Journal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 005::page 050801-1
    Author:
    Chen, Sheng
    ,
    Grimm, Michele J.
    DOI: 10.1115/1.4049226
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The biomechanical process of childbirth is necessary to usher in new lives—but it can also result in trauma. This physically intense process can put both the mother and the child at risk of injuries and complications that have life-long impact. Computational models, as a powerful tool to simulate and explore complex phenomena, have been used to improve our understanding of childbirth processes and related injuries since the 1990s. The goal of this paper is to review and summarize the breadth and current state of the computational models of childbirth in the literature—focusing on those that investigate the mechanical process and effects. We first summarize the state of critical characteristics that have been included in computational models of childbirth (i.e., maternal anatomy, fetal anatomy, cardinal movements, and maternal soft tissue mechanical behavior). We then delve into the findings of the past studies of birth processes and mechanical injuries in an effort to bridge the gap between the theoretical, numerical assessment and the empirical, clinical observations and practices. These findings are from applications of childbirth computational models in four areas: (1) the process of childbirth itself, (2) maternal injuries, (3) fetal injuries, and (4) protective measures employed by clinicians during delivery. Finally, we identify some of the challenges that computational models still face and suggest future directions through which more biofidelic simulations of childbirth might be achieved, with the goal that advancing models may provide more efficient and accurate, patient-specific assessment to support future clinical decision-making.
    • Download: (1.204Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Childbirth Computational Models: Characteristics and Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277836
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorChen, Sheng
    contributor authorGrimm, Michele J.
    date accessioned2022-02-05T22:36:26Z
    date available2022-02-05T22:36:26Z
    date copyright2/19/2021 12:00:00 AM
    date issued2021
    identifier issn0148-0731
    identifier otherbio_143_05_050801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277836
    description abstractThe biomechanical process of childbirth is necessary to usher in new lives—but it can also result in trauma. This physically intense process can put both the mother and the child at risk of injuries and complications that have life-long impact. Computational models, as a powerful tool to simulate and explore complex phenomena, have been used to improve our understanding of childbirth processes and related injuries since the 1990s. The goal of this paper is to review and summarize the breadth and current state of the computational models of childbirth in the literature—focusing on those that investigate the mechanical process and effects. We first summarize the state of critical characteristics that have been included in computational models of childbirth (i.e., maternal anatomy, fetal anatomy, cardinal movements, and maternal soft tissue mechanical behavior). We then delve into the findings of the past studies of birth processes and mechanical injuries in an effort to bridge the gap between the theoretical, numerical assessment and the empirical, clinical observations and practices. These findings are from applications of childbirth computational models in four areas: (1) the process of childbirth itself, (2) maternal injuries, (3) fetal injuries, and (4) protective measures employed by clinicians during delivery. Finally, we identify some of the challenges that computational models still face and suggest future directions through which more biofidelic simulations of childbirth might be achieved, with the goal that advancing models may provide more efficient and accurate, patient-specific assessment to support future clinical decision-making.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleChildbirth Computational Models: Characteristics and Applications
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4049226
    journal fristpage050801-1
    journal lastpage050801-14
    page14
    treeJournal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian