YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions

    Source: Journal of Energy Resources Technology:;2020:;volume( 143 ):;issue: 003::page 032305-1
    Author:
    Pal, Pinaki
    ,
    Kalvakala, Krishna
    ,
    Wu, Yunchao
    ,
    McNenly, Matthew
    ,
    Lapointe, Simon
    ,
    Whitesides, Russell
    ,
    Lu, Tianfeng
    ,
    Aggarwal, Suresh K.
    ,
    Som, Sibendu
    DOI: 10.1115/1.4048995
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the present work, a central fuel property hypothesis (CFPH), which states that fuel properties are sufficient to provide an indication of a fuel’s performance irrespective of its chemical composition, was numerically investigated. In particular, the objective of the study was to determine whether Research Octane Number (RON) and Motor Octane Number (MON), as fuel properties, are sufficient to describe a fuel’s knock-limited performance under boosted spark-ignition (SI) conditions within the framework of CFPH. To this end, four TPRF-bioblendstock surrogates having different compositions but matched RON (=98) and MON (=90), were first generated using a non-linear regression model based on artificial neural network (ANN). Three unconventional bioblendstocks were included in the analysis: di-isobutylene (DIB), isobutanol, and Anisole. Skeletal reaction mechanisms were generated for the TPRF-DIB, TPRF-isobutanol, and TPRF-anisole blends from a detailed kinetic mechanism. Thereafter, numerical simulations were performed for the fuel surrogates using the skeletal mechanisms and a virtual cooperative fuel research (CFR) engine model, under a representative boosted operating condition. In the computational fluid dynamics (CFD) model, the G-equation approach was employed to track the turbulent flame front and the well-stirred reactor model combined with the multi-zone binning strategy was used to capture auto-ignition in the end-gas. In addition, laminar flame speed (LFS) was tabulated for each blend as a function of pressure, temperature, and equivalence ratio a priori, and the lookup tables were used to prescribe laminar flame speed as an input to the G-equation model. Parametric spark timing sweeps were performed for each fuel blend to determine the corresponding knock-limited spark advance (KLSA) and 50% burn point (CA50) at the respective KLSA timing. It was observed that despite same RON, MON, and engine operating conditions, the TPRF-anisole blend exhibited markedly different knock-limited performance from the other three blends. This deviation from the octane index (OI) expectation was shown to be caused by differences in laminar flame speed. However, it was found that relatively large fuel-specific differences in LFS (>20%) would have to be present to cause any appreciable deviation from the OI framework. Otherwise, RON and MON would still be robust enough to predict a fuel’s knock-limited performance.
    • Download: (864.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277833
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorPal, Pinaki
    contributor authorKalvakala, Krishna
    contributor authorWu, Yunchao
    contributor authorMcNenly, Matthew
    contributor authorLapointe, Simon
    contributor authorWhitesides, Russell
    contributor authorLu, Tianfeng
    contributor authorAggarwal, Suresh K.
    contributor authorSom, Sibendu
    date accessioned2022-02-05T22:36:19Z
    date available2022-02-05T22:36:19Z
    date copyright12/10/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_143_3_032305.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277833
    description abstractIn the present work, a central fuel property hypothesis (CFPH), which states that fuel properties are sufficient to provide an indication of a fuel’s performance irrespective of its chemical composition, was numerically investigated. In particular, the objective of the study was to determine whether Research Octane Number (RON) and Motor Octane Number (MON), as fuel properties, are sufficient to describe a fuel’s knock-limited performance under boosted spark-ignition (SI) conditions within the framework of CFPH. To this end, four TPRF-bioblendstock surrogates having different compositions but matched RON (=98) and MON (=90), were first generated using a non-linear regression model based on artificial neural network (ANN). Three unconventional bioblendstocks were included in the analysis: di-isobutylene (DIB), isobutanol, and Anisole. Skeletal reaction mechanisms were generated for the TPRF-DIB, TPRF-isobutanol, and TPRF-anisole blends from a detailed kinetic mechanism. Thereafter, numerical simulations were performed for the fuel surrogates using the skeletal mechanisms and a virtual cooperative fuel research (CFR) engine model, under a representative boosted operating condition. In the computational fluid dynamics (CFD) model, the G-equation approach was employed to track the turbulent flame front and the well-stirred reactor model combined with the multi-zone binning strategy was used to capture auto-ignition in the end-gas. In addition, laminar flame speed (LFS) was tabulated for each blend as a function of pressure, temperature, and equivalence ratio a priori, and the lookup tables were used to prescribe laminar flame speed as an input to the G-equation model. Parametric spark timing sweeps were performed for each fuel blend to determine the corresponding knock-limited spark advance (KLSA) and 50% burn point (CA50) at the respective KLSA timing. It was observed that despite same RON, MON, and engine operating conditions, the TPRF-anisole blend exhibited markedly different knock-limited performance from the other three blends. This deviation from the octane index (OI) expectation was shown to be caused by differences in laminar flame speed. However, it was found that relatively large fuel-specific differences in LFS (>20%) would have to be present to cause any appreciable deviation from the OI framework. Otherwise, RON and MON would still be robust enough to predict a fuel’s knock-limited performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions
    typeJournal Paper
    journal volume143
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4048995
    journal fristpage032305-1
    journal lastpage032305-8
    page8
    treeJournal of Energy Resources Technology:;2020:;volume( 143 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian