YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Research on Hybrid Energy Storage Configuration in Grid Wind Power Scheduling Tracking Under Statistics and Frequency Decomposition

    Source: Journal of Electrochemical Energy Conversion and Storage:;2020:;volume( 018 ):;issue: 003::page 031006-1
    Author:
    Zhu, Jian-hong
    ,
    Pan, Wen-xia
    ,
    Gu, Juping
    DOI: 10.1115/1.4048659
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The low accuracy of wind power scheduling influences the grid dispatch adversely, increasing the demand for spinning to reserve capacity and obstructing the grid frequency regulation. Considering the throughput characteristics of energy storage system, which can be used to compensate for wind farm power scheduling deviations, and smooth the grid power fluctuations, the hybrid energy storage (HES) is employed to enhance the dispatch ability of wind power generation. As one of the key techniques, desirable energy storage capacity configuration (ESCC) and control methods would accelerate the application of energy storage in the field of new resource. Combined with statistics and frequency decomposition of scheduling power deviation, HES capacity configuration and online dynamic power allocation method are proposed. First, by analysis of grid assessment indexes of wind power, scheduled wind power data are produced by improved adaptive error factor correction particle swarm optimization back-propagation neural network (AEFC-PSO-BPNN) prediction followed by wavelet packet smooth (WPS). After comparing with actual power, scheduling deviation statistics and frequency decomposition are applied in capacity and power configuration of energy storage, as well as dynamic power distribution control. With wind/storage simulation platform, then, feasibility of energy storage embedded in grid wind power scheduling deviation, regulation is verified under several combined methods, and the proposed ESCC methods are tested in application case by grid wind power indexes of root-mean-square error rate (RMSE), average volatility (AV), maximum throughout power and current (MTP, MTC), actual supercapacitor (SC), battery consumption capacity, and the number of crossings of state of charge (SOC) of HES. Finally, analyses and comparison of energy storage capacity requirements are carried out on different scheduling deviation control methods so as to explore the significant factors influencing capacity allocation. Applying these methods can improve the scheduling accuracy of grid wind power, reduce power fluctuations at the power common connected (PCC) point, and minimize the impact of accessed wind power to the grid as much as possible.
    • Download: (879.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Research on Hybrid Energy Storage Configuration in Grid Wind Power Scheduling Tracking Under Statistics and Frequency Decomposition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277770
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorZhu, Jian-hong
    contributor authorPan, Wen-xia
    contributor authorGu, Juping
    date accessioned2022-02-05T22:34:07Z
    date available2022-02-05T22:34:07Z
    date copyright10/29/2020 12:00:00 AM
    date issued2020
    identifier issn2381-6872
    identifier otherjeecs_18_3_031006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277770
    description abstractThe low accuracy of wind power scheduling influences the grid dispatch adversely, increasing the demand for spinning to reserve capacity and obstructing the grid frequency regulation. Considering the throughput characteristics of energy storage system, which can be used to compensate for wind farm power scheduling deviations, and smooth the grid power fluctuations, the hybrid energy storage (HES) is employed to enhance the dispatch ability of wind power generation. As one of the key techniques, desirable energy storage capacity configuration (ESCC) and control methods would accelerate the application of energy storage in the field of new resource. Combined with statistics and frequency decomposition of scheduling power deviation, HES capacity configuration and online dynamic power allocation method are proposed. First, by analysis of grid assessment indexes of wind power, scheduled wind power data are produced by improved adaptive error factor correction particle swarm optimization back-propagation neural network (AEFC-PSO-BPNN) prediction followed by wavelet packet smooth (WPS). After comparing with actual power, scheduling deviation statistics and frequency decomposition are applied in capacity and power configuration of energy storage, as well as dynamic power distribution control. With wind/storage simulation platform, then, feasibility of energy storage embedded in grid wind power scheduling deviation, regulation is verified under several combined methods, and the proposed ESCC methods are tested in application case by grid wind power indexes of root-mean-square error rate (RMSE), average volatility (AV), maximum throughout power and current (MTP, MTC), actual supercapacitor (SC), battery consumption capacity, and the number of crossings of state of charge (SOC) of HES. Finally, analyses and comparison of energy storage capacity requirements are carried out on different scheduling deviation control methods so as to explore the significant factors influencing capacity allocation. Applying these methods can improve the scheduling accuracy of grid wind power, reduce power fluctuations at the power common connected (PCC) point, and minimize the impact of accessed wind power to the grid as much as possible.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleResearch on Hybrid Energy Storage Configuration in Grid Wind Power Scheduling Tracking Under Statistics and Frequency Decomposition
    typeJournal Paper
    journal volume18
    journal issue3
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4048659
    journal fristpage031006-1
    journal lastpage031006-10
    page10
    treeJournal of Electrochemical Energy Conversion and Storage:;2020:;volume( 018 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian