YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Deep Lifelong Learning Method for Digital Twin-Driven Defect Recognition With Novel Classes

    Source: Journal of Computing and Information Science in Engineering:;2021:;volume( 021 ):;issue: 003::page 031004-1
    Author:
    Yiping, Gao
    ,
    Xinyu, Li
    ,
    Gao, Liang
    DOI: 10.1115/1.4049960
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recently, digital twins (DTs) have become a research hotspot in smart manufacturing, and using DTs to assist defect recognition has also become a development trend. Real-time data collection is one of the advantages of DTs, and it can help the realization of real-time defect recognition. However, DT-driven defect recognition cannot be realized unless some bottlenecks of the recognition models, such as the time efficiency, have been solved. To improve the time efficiency, novel defect class recognition is an essential problem. Most of the existing methods can only recognize the known defect classes, which are available during training. For new incoming classes, known as novel classes, these models must be rebuilt, which is time-consuming and costly. This greatly impedes the realization of DT-driven defect recognition. To overcome this problem, this paper proposes a deep lifelong learning method for novel class recognition. The proposed method uses a two-level deep learning architecture to detect and recognize novel classes, and uses a lifelong learning strategy, weight imprinting, to upgrade the model. With these improvements, the proposed method can handle novel classes timely. The experimental results indicate that the proposed method achieves good results for the novel classes, and it has almost no delay for production. Compared with the rebuilt methods, the time cost is reduced by at least 200 times. This result suggests that the proposed method has good potential in the realization of DT-driven defect recognition.
    • Download: (834.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Deep Lifelong Learning Method for Digital Twin-Driven Defect Recognition With Novel Classes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277712
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorYiping, Gao
    contributor authorXinyu, Li
    contributor authorGao, Liang
    date accessioned2022-02-05T22:32:06Z
    date available2022-02-05T22:32:06Z
    date copyright2/11/2021 12:00:00 AM
    date issued2021
    identifier issn1530-9827
    identifier otherjcise_21_3_031004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277712
    description abstractRecently, digital twins (DTs) have become a research hotspot in smart manufacturing, and using DTs to assist defect recognition has also become a development trend. Real-time data collection is one of the advantages of DTs, and it can help the realization of real-time defect recognition. However, DT-driven defect recognition cannot be realized unless some bottlenecks of the recognition models, such as the time efficiency, have been solved. To improve the time efficiency, novel defect class recognition is an essential problem. Most of the existing methods can only recognize the known defect classes, which are available during training. For new incoming classes, known as novel classes, these models must be rebuilt, which is time-consuming and costly. This greatly impedes the realization of DT-driven defect recognition. To overcome this problem, this paper proposes a deep lifelong learning method for novel class recognition. The proposed method uses a two-level deep learning architecture to detect and recognize novel classes, and uses a lifelong learning strategy, weight imprinting, to upgrade the model. With these improvements, the proposed method can handle novel classes timely. The experimental results indicate that the proposed method achieves good results for the novel classes, and it has almost no delay for production. Compared with the rebuilt methods, the time cost is reduced by at least 200 times. This result suggests that the proposed method has good potential in the realization of DT-driven defect recognition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Deep Lifelong Learning Method for Digital Twin-Driven Defect Recognition With Novel Classes
    typeJournal Paper
    journal volume21
    journal issue3
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4049960
    journal fristpage031004-1
    journal lastpage031004-9
    page9
    treeJournal of Computing and Information Science in Engineering:;2021:;volume( 021 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian