YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Natural Convection Heat Transfer From a Vertical Hollow Cylinder With Surface Holes

    Source: Journal of Heat Transfer:;2021:;volume( 143 ):;issue: 004::page 042602-1
    Author:
    Acharya, Swastik
    ,
    Dash, Sukanta K.
    DOI: 10.1115/1.4049840
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Three-dimensional continuity, momentum, and energy equations have been solved around a perforated vertical hollow cylinder to predict the buoyancy-induced flow field and the temperature distribution around it. Finite volume method (FVM) has been implemented for the discretization of the underlying governing equations. Second-order upwind scheme has been adopted to discretize the convective terms in the momentum and energy equation. Results have been obtained by varying the input parameters like hole diameter to cylinder length ratio (d/L), pitch to length ratio (P/L), angular pitch (θ), cylinder length to diameter ratio (L/D), and Rayleigh number (Ra) spanning from 0.005 to 0.08, 0.1 to 0.3333, 30 deg to 180 deg, 2 to 20, and 104 to 108, respectively. It has been found that the average surface Nusselt number (Nu) for the outer surface increases with the diameter of the hole for Ra of 106, however for Ra of 108, it marginally decreases up to d/L of 0.01 and then increases. Nu for the inner surface increases when d/L is more than 0.04 for all Ra. The cylinder with the staggered holes shows a slightly higher Nu compared to the inline holes. Nu for the inner and outer surface at a lower pitch is less than that of the higher pitch when d/L is less than 0.02 for all Ra. The heat transfer rate of the perforated cylinder is more than the nonperforated cylinder for all the cases when L/D is less than 10 and Ra less than 106. However, for Ra more than 106, the perforated cylinder always loses more heat compared to the nonperforated one for all L/D. Finally, the correlation for Nu has been proposed as a function of the pertinent input parameters for future reference in the academic as well as industrial practices.
    • Download: (5.435Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Natural Convection Heat Transfer From a Vertical Hollow Cylinder With Surface Holes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277575
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorAcharya, Swastik
    contributor authorDash, Sukanta K.
    date accessioned2022-02-05T22:27:44Z
    date available2022-02-05T22:27:44Z
    date copyright2/22/2021 12:00:00 AM
    date issued2021
    identifier issn0022-1481
    identifier otherht_143_04_042602.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277575
    description abstractThree-dimensional continuity, momentum, and energy equations have been solved around a perforated vertical hollow cylinder to predict the buoyancy-induced flow field and the temperature distribution around it. Finite volume method (FVM) has been implemented for the discretization of the underlying governing equations. Second-order upwind scheme has been adopted to discretize the convective terms in the momentum and energy equation. Results have been obtained by varying the input parameters like hole diameter to cylinder length ratio (d/L), pitch to length ratio (P/L), angular pitch (θ), cylinder length to diameter ratio (L/D), and Rayleigh number (Ra) spanning from 0.005 to 0.08, 0.1 to 0.3333, 30 deg to 180 deg, 2 to 20, and 104 to 108, respectively. It has been found that the average surface Nusselt number (Nu) for the outer surface increases with the diameter of the hole for Ra of 106, however for Ra of 108, it marginally decreases up to d/L of 0.01 and then increases. Nu for the inner surface increases when d/L is more than 0.04 for all Ra. The cylinder with the staggered holes shows a slightly higher Nu compared to the inline holes. Nu for the inner and outer surface at a lower pitch is less than that of the higher pitch when d/L is less than 0.02 for all Ra. The heat transfer rate of the perforated cylinder is more than the nonperforated cylinder for all the cases when L/D is less than 10 and Ra less than 106. However, for Ra more than 106, the perforated cylinder always loses more heat compared to the nonperforated one for all L/D. Finally, the correlation for Nu has been proposed as a function of the pertinent input parameters for future reference in the academic as well as industrial practices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNatural Convection Heat Transfer From a Vertical Hollow Cylinder With Surface Holes
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4049840
    journal fristpage042602-1
    journal lastpage042602-13
    page13
    treeJournal of Heat Transfer:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian