YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Burnett Stresses and Entropy Generation for Pressure-Driven Plane Poiseuille Flow

    Source: Journal of Heat Transfer:;2021:;volume( 143 ):;issue: 003::page 032102-1
    Author:
    Yadav, Upendra
    ,
    Agrawal, Amit
    DOI: 10.1115/1.4048969
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we undertake an analytical study of stresses (augmented and Onsager–Burnett) and entropy generation for the plane Poiseuille flow problem, and their variation with Knudsen number. The gas flow is assumed to be 2D laminar, fully developed, compressible, and isothermal; these assumptions make the problem amenable to analytical treatment. The variation of stresses and entropy generation has been analyzed over a large range of Knudsen number. The magnitude of stresses and entropy generation at a particular position in the channel has been considered. It is found that the augmented and OBurnett normal stresses are of opposite signs to the corresponding Navier–Stokes stresses, while the magnitude of the net normal stress increases with Knudsen number. The magnitude of the augmented Burnett shear stress is insignificant as compared to the augmented Burnett normal stresses. A close match between the augmented and OBurnett normal stresses has been found at low Knudsen number. However, an opposite variation has been observed between the augmented and Onsager shear stresses at high Knudsen number. A good comparison of the normalized mass flow rate with the reported value in the literature helps to validate our analysis. A minimum in the variation of normalized entropy generation against the Knudsen number (Kn) is observed at Kn close to unity, and is being reported for the first time. The magnitude of net entropy generation from the summation of Navier–Stokes and augmented Burnett stresses is found to be positive, even in the transition regime of gas flow. Further, an appearance of minimum or maximum in normalized net shear stress versus Knudsen number, depending upon the lateral position in the microchannel, has also been observed. Altogether, this analysis supports the validity of the Navier–Stokes equation with modified constitutive expression, even for higher Knudsen numbers. Moreover, the significant terms of Burnett stress are pointed out by the analysis, which can help in developing reduced-order model for these equations.
    • Download: (1.847Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Burnett Stresses and Entropy Generation for Pressure-Driven Plane Poiseuille Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277560
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorYadav, Upendra
    contributor authorAgrawal, Amit
    date accessioned2022-02-05T22:27:15Z
    date available2022-02-05T22:27:15Z
    date copyright1/18/2021 12:00:00 AM
    date issued2021
    identifier issn0022-1481
    identifier otherht_143_03_032102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277560
    description abstractIn this paper, we undertake an analytical study of stresses (augmented and Onsager–Burnett) and entropy generation for the plane Poiseuille flow problem, and their variation with Knudsen number. The gas flow is assumed to be 2D laminar, fully developed, compressible, and isothermal; these assumptions make the problem amenable to analytical treatment. The variation of stresses and entropy generation has been analyzed over a large range of Knudsen number. The magnitude of stresses and entropy generation at a particular position in the channel has been considered. It is found that the augmented and OBurnett normal stresses are of opposite signs to the corresponding Navier–Stokes stresses, while the magnitude of the net normal stress increases with Knudsen number. The magnitude of the augmented Burnett shear stress is insignificant as compared to the augmented Burnett normal stresses. A close match between the augmented and OBurnett normal stresses has been found at low Knudsen number. However, an opposite variation has been observed between the augmented and Onsager shear stresses at high Knudsen number. A good comparison of the normalized mass flow rate with the reported value in the literature helps to validate our analysis. A minimum in the variation of normalized entropy generation against the Knudsen number (Kn) is observed at Kn close to unity, and is being reported for the first time. The magnitude of net entropy generation from the summation of Navier–Stokes and augmented Burnett stresses is found to be positive, even in the transition regime of gas flow. Further, an appearance of minimum or maximum in normalized net shear stress versus Knudsen number, depending upon the lateral position in the microchannel, has also been observed. Altogether, this analysis supports the validity of the Navier–Stokes equation with modified constitutive expression, even for higher Knudsen numbers. Moreover, the significant terms of Burnett stress are pointed out by the analysis, which can help in developing reduced-order model for these equations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Burnett Stresses and Entropy Generation for Pressure-Driven Plane Poiseuille Flow
    typeJournal Paper
    journal volume143
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4048969
    journal fristpage032102-1
    journal lastpage032102-10
    page10
    treeJournal of Heat Transfer:;2021:;volume( 143 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian