YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Development of Correlations for Bubble Liftoff Parameters During Subcooled Nucleate Flow Boiling Using Nonintrusive Dynamic Measurements

    Source: Journal of Heat Transfer:;2020:;volume( 143 ):;issue: 002::page 021602-1
    Author:
    Sinha, Gulshan Kumar
    ,
    Srivastava, Atul
    DOI: 10.1115/1.4048824
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accurate prediction of bubble dynamic parameters is essential to improve boiling heat transfer models. Considering the complexities and challenges associated with performing a large number of boiling experiments, researchers have realized the importance of experimental correlations for predicting bubble dynamic parameters. In this direction, we report an experimental work concerned with the development of correlations for various bubble liftoff parameters during nucleate flow boiling regime. As a definite advancement, the experimental measurements have been performed in a purely nonintrusive manner, thereby minimizing the errors arising due to the interaction of any external probe with the process under study. The measurement approach makes use of a gradient-based imaging technique to simultaneously map the bubbling features and thermal field around a single vapor bubble generated under subcooled flow boiling conditions. Experiments have been performed in a rectangular channel for a wide range of heat fluxes (q = 20–50 kW/m2), subcooling level (ΔTsub = 2–9 K), and Reynolds numbers (Re = 600–6000) with water as the working fluid. Results show a strong dependence of bubble liftoff parameters on Reynolds number, subcooling level, and applied heat flux. Based on the experimental measurements, empirical correlations have been developed for various bubble liftoff parameters as a function of Jacob number and Reynolds number. Predictions made through the developed correlations are found to be in good agreement with the measured values as well as with the values reported in the available literature. Of all the bubble parameters, maximum deviation between the predicted and measured values (≈23%) was found to be in bubble release frequency.
    • Download: (2.436Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Development of Correlations for Bubble Liftoff Parameters During Subcooled Nucleate Flow Boiling Using Nonintrusive Dynamic Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277533
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSinha, Gulshan Kumar
    contributor authorSrivastava, Atul
    date accessioned2022-02-05T22:26:17Z
    date available2022-02-05T22:26:17Z
    date copyright11/16/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_143_02_021602.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277533
    description abstractAccurate prediction of bubble dynamic parameters is essential to improve boiling heat transfer models. Considering the complexities and challenges associated with performing a large number of boiling experiments, researchers have realized the importance of experimental correlations for predicting bubble dynamic parameters. In this direction, we report an experimental work concerned with the development of correlations for various bubble liftoff parameters during nucleate flow boiling regime. As a definite advancement, the experimental measurements have been performed in a purely nonintrusive manner, thereby minimizing the errors arising due to the interaction of any external probe with the process under study. The measurement approach makes use of a gradient-based imaging technique to simultaneously map the bubbling features and thermal field around a single vapor bubble generated under subcooled flow boiling conditions. Experiments have been performed in a rectangular channel for a wide range of heat fluxes (q = 20–50 kW/m2), subcooling level (ΔTsub = 2–9 K), and Reynolds numbers (Re = 600–6000) with water as the working fluid. Results show a strong dependence of bubble liftoff parameters on Reynolds number, subcooling level, and applied heat flux. Based on the experimental measurements, empirical correlations have been developed for various bubble liftoff parameters as a function of Jacob number and Reynolds number. Predictions made through the developed correlations are found to be in good agreement with the measured values as well as with the values reported in the available literature. Of all the bubble parameters, maximum deviation between the predicted and measured values (≈23%) was found to be in bubble release frequency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Development of Correlations for Bubble Liftoff Parameters During Subcooled Nucleate Flow Boiling Using Nonintrusive Dynamic Measurements
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4048824
    journal fristpage021602-1
    journal lastpage021602-13
    page13
    treeJournal of Heat Transfer:;2020:;volume( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian