YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Grad's Second Problem Using Different Higher Order Continuum Theories

    Source: Journal of Heat Transfer:;2020:;volume( 143 ):;issue: 001::page 012102-1
    Author:
    Jadhav, Ravi Sudam
    ,
    Agrawal, Amit
    DOI: 10.1115/1.4048736
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In our earlier work (Jadhav, and Agrawal, 2020, “Grad's second problem and its solution within the framework of Burnett hydrodynamics,” ASME J. Heat Transfer, 142(10), p. 102105), we proposed Grad's second problem (examination of steady-state solution for a gas at rest upon application of a one-dimensional heat flux) as a potential benchmark problem for testing the accuracy of different higher order continuum theories and solved the problem within the framework of Burnett hydrodynamics. In this work, we solve this problem within the moment framework and also examine two variants, Bhatnagar–Gross–Krook (BGK)–Burnett and regularized 13 moment equations, for this problem. It is observed that only the conventional form of Burnett equations which are derived retaining the full nonlinear collision integral are able to capture nonuniform pressure profile observed in case of hard-sphere molecules. On the other hand, BGK–Burnett equations derived using BGK-kinetic model predict uniform pressure profile in both the cases. It seems that the variants based on BGK-kinetic model do not distinguish between hard-sphere and Maxwell molecules at least for the problem considered. With respect to moment equations, Grad 13 and regularized 13 moment equations predict consistent results for Maxwell molecules. However, for hard-sphere molecules, since the exact closed form of moment equations is not known, it is difficult to comment upon the results of moment equations for hard-sphere molecules. The present results for this relatively simple problem provide valuable insights into the nature of the equations and important remarks are made in this context.
    • Download: (308.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Grad's Second Problem Using Different Higher Order Continuum Theories

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277519
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJadhav, Ravi Sudam
    contributor authorAgrawal, Amit
    date accessioned2022-02-05T22:25:47Z
    date available2022-02-05T22:25:47Z
    date copyright11/4/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_143_01_012102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277519
    description abstractIn our earlier work (Jadhav, and Agrawal, 2020, “Grad's second problem and its solution within the framework of Burnett hydrodynamics,” ASME J. Heat Transfer, 142(10), p. 102105), we proposed Grad's second problem (examination of steady-state solution for a gas at rest upon application of a one-dimensional heat flux) as a potential benchmark problem for testing the accuracy of different higher order continuum theories and solved the problem within the framework of Burnett hydrodynamics. In this work, we solve this problem within the moment framework and also examine two variants, Bhatnagar–Gross–Krook (BGK)–Burnett and regularized 13 moment equations, for this problem. It is observed that only the conventional form of Burnett equations which are derived retaining the full nonlinear collision integral are able to capture nonuniform pressure profile observed in case of hard-sphere molecules. On the other hand, BGK–Burnett equations derived using BGK-kinetic model predict uniform pressure profile in both the cases. It seems that the variants based on BGK-kinetic model do not distinguish between hard-sphere and Maxwell molecules at least for the problem considered. With respect to moment equations, Grad 13 and regularized 13 moment equations predict consistent results for Maxwell molecules. However, for hard-sphere molecules, since the exact closed form of moment equations is not known, it is difficult to comment upon the results of moment equations for hard-sphere molecules. The present results for this relatively simple problem provide valuable insights into the nature of the equations and important remarks are made in this context.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of Grad's Second Problem Using Different Higher Order Continuum Theories
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4048736
    journal fristpage012102-1
    journal lastpage012102-8
    page8
    treeJournal of Heat Transfer:;2020:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian