Show simple item record

contributor authorAsli, Majid
contributor authorStathopoulos, Panagiotis
contributor authorPaschereit, Christian Oliver
date accessioned2022-02-05T22:22:45Z
date available2022-02-05T22:22:45Z
date copyright3/16/2021 12:00:00 AM
date issued2021
identifier issn0742-4795
identifier othergtp_143_06_061011.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277432
description abstractAny outlet restriction downstream of pressure gain combustion (PGC), such as turbine blades, affects its flow field and may cause additional thermodynamic losses. The unsteadiness in the form of pressure, temperature, and velocity vector fluctuations has a negative impact on the operation of conventional turbines. Additionally, experimental measurements and data acquisition present researchers with challenges that have to do mostly with the high temperature exhaust of PGC and the high frequency of its operation. Nevertheless, numerical simulations can provide important insights into PGC exhaust flow and its interaction with turbine blades. In this paper, a rotating detonation combustor (RDC) and a row of nozzle guide vanes have been modeled based on the data from literature and an available experimental setup. Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations were done for five guide vane configurations with different geometrical parameters to investigate the effect of solidity and blade type representing different outlet restrictions on the RDC exhaust flow. The results analyzed the connection between total pressure loss and the vanes solidity and thickness to chord ratio. It is observed that more than 57% of the upstream velocity angle fluctuation amplitude was damped by the vanes. Furthermore, the area reduction was found to be the significant driving factor for damping the velocity angle fluctuations, whether in the form of solidity or thickness on chord ratio increment. This RDC exhaust flow investigation is an important primary step from a turbomachinery standpoint, which provided details of blade behavior in such an unsteady flow field.
publisherThe American Society of Mechanical Engineers (ASME)
titleAerodynamic Investigation of Guide Vane Configurations Downstream a Rotating Detonation Combustor
typeJournal Paper
journal volume143
journal issue6
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4049188
journal fristpage061011-1
journal lastpage061011-7
page7
treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record