Show simple item record

contributor authorZeh, Christopher
contributor authorWillers, Ole
contributor authorHagemann, Thomas
contributor authorSchwarze, Hubert
contributor authorSeume, Jörg
date accessioned2022-02-05T22:20:07Z
date available2022-02-05T22:20:07Z
date copyright2/24/2021 12:00:00 AM
date issued2021
identifier issn0742-4795
identifier othergtp_143_03_031022.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277357
description abstractWhile turbocharging is a key technology for improving the performance and efficiency of internal combustion engines, the operating behavior of the turbocharger is highly dependent on the rotor temperature distribution as it directly modifies viscosity and clearances of the fluid film bearings. Since a direct experimental identification of the rotor temperature of an automotive turbocharger is not feasible at an acceptable expense, a combination of numerical analysis and experimental identification is applied to investigate its temperature characteristic and level. On the one hand, a numerical conjugate heat transfer (CHT) model of the automotive turbocharger investigated is developed using a commercial CFD-tool and a bidirectional, thermal coupling of the CFD-model with thermohydrodynamic lubrication simulation codes is implemented. On the other hand, experimental investigations of the numerically modeled turbocharger are conducted on a hot gas turbocharger test rig for selected operating points. Here, rotor speeds range from 64.000 to 168.000 rpm. The turbine inlet temperature is set to 600 °C and the lubricant is supplied at a pressure of 300 kPa with 90 °C to ensure practically relevant boundary conditions. Comparisons of measured and numerically predicted local temperatures of the turbocharger components indicate a good agreement between the analyses. The calorimetrically determined frictional power loss of the bearings as well as the floating ring speed are used as additional validation parameters. Evaluation of heat flow of diabatic simulations indicates a high sensitivity of local temperatures to rotor speed and load. A cooling effect of the fluid film bearings is present. Consequently, results confirm the necessity of the diabatic approach to the heat flow analysis of turbocharger rotors.
publisherThe American Society of Mechanical Engineers (ASME)
titleEvaluation of the Rotor Temperature Distribution of an Automotive Turbocharger Under Hot Gas Conditions Including Indirect Experimental Validation
typeJournal Paper
journal volume143
journal issue3
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4049825
journal fristpage031022-1
journal lastpage031022-9
page9
treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record