YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large Eddy Simulation of Microvortex Generators in a Turbulent Boundary Layer

    Source: Journal of Fluids Engineering:;2021:;volume( 143 ):;issue: 005::page 051208-1
    Author:
    Heffron, Andrew P.
    ,
    Williams, John J.
    ,
    Avital, Eldad J.
    DOI: 10.1115/1.4049817
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study investigates the flow physics on microvortex generators (MVGs) in order to improve their performance in turbulent boundary layers (TBLs). TBLs can be a challenging environment for MVGs because of the streamwise length of the generated vortex and the increased parasitic drag of the MVGs. Large eddy simulation (LES) is used to properly resolve the turbulent boundary layer of a flat-plate with a zero-pressure gradient and MVG vane. Three different vane-types are investigated (e423-Mod, triangular, and rectangular vanes) and are studied in a single vane configuration. Important flow features such as a separation bubble on the leading edge of the rectangular vanes which introduced unsteadiness into the vortex formation and degraded the MVG's efficiency was observed. The e423-Mod and triangular vanes were observed to be more aerodynamically efficient. The triangular vane was found to be the most efficient when evaluated immediately downstream of the vane. However, the vortex from the triangular vane decayed very rapidly due to it being formed very close to the wall which degraded its efficiency further downstream. The e423-Mod vane avoided this problem but its drag was very high relative to the strength of the generated vortex and its vortex experienced a brief period of rapid decay immediately downstream decreasing its efficiency. Further downstream, the vortex of the rectangular vane at 16 deg became the most efficient through a combination of low vane drag and low vortex decay in the TBL, demonstrating the need to consider a range of issues when designing an MVG.
    • Download: (6.892Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large Eddy Simulation of Microvortex Generators in a Turbulent Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277247
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorHeffron, Andrew P.
    contributor authorWilliams, John J.
    contributor authorAvital, Eldad J.
    date accessioned2022-02-05T22:16:16Z
    date available2022-02-05T22:16:16Z
    date copyright2/19/2021 12:00:00 AM
    date issued2021
    identifier issn0098-2202
    identifier otherfe_143_05_051208.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277247
    description abstractThis study investigates the flow physics on microvortex generators (MVGs) in order to improve their performance in turbulent boundary layers (TBLs). TBLs can be a challenging environment for MVGs because of the streamwise length of the generated vortex and the increased parasitic drag of the MVGs. Large eddy simulation (LES) is used to properly resolve the turbulent boundary layer of a flat-plate with a zero-pressure gradient and MVG vane. Three different vane-types are investigated (e423-Mod, triangular, and rectangular vanes) and are studied in a single vane configuration. Important flow features such as a separation bubble on the leading edge of the rectangular vanes which introduced unsteadiness into the vortex formation and degraded the MVG's efficiency was observed. The e423-Mod and triangular vanes were observed to be more aerodynamically efficient. The triangular vane was found to be the most efficient when evaluated immediately downstream of the vane. However, the vortex from the triangular vane decayed very rapidly due to it being formed very close to the wall which degraded its efficiency further downstream. The e423-Mod vane avoided this problem but its drag was very high relative to the strength of the generated vortex and its vortex experienced a brief period of rapid decay immediately downstream decreasing its efficiency. Further downstream, the vortex of the rectangular vane at 16 deg became the most efficient through a combination of low vane drag and low vortex decay in the TBL, demonstrating the need to consider a range of issues when designing an MVG.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLarge Eddy Simulation of Microvortex Generators in a Turbulent Boundary Layer
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4049817
    journal fristpage051208-1
    journal lastpage051208-12
    page12
    treeJournal of Fluids Engineering:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian