YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices

    Source: Journal of Fluids Engineering:;2020:;volume( 143 ):;issue: 001::page 011202-1
    Author:
    Liebrand, Rens
    ,
    Klapwijk, Maarten
    ,
    Lloyd, Thomas
    ,
    Vaz, Guilherme
    DOI: 10.1115/1.4048133
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study evaluates the influence of transition and turbulence modeling on the prediction of wetted and cavitating tip vortices for an elliptical wing, while investigating the numerical errors. Transition modeling increases the quality of numerical predictions since the assumption of a fully turbulent boundary layer, commonly found in literature, contributes to underprediction of the tip vortex cavity size. By applying the local correlation-based transition model (LCTM) and controlling the boundary layer thickness using different turbulent inflow conditions, the pressure in the vortex was found to reduce by 20% for an Angle of Attack (AoA) of 5 deg. The consequent increase in cavity size was found to be of a similar order of magnitude. At 9 deg AoA, transition always occurs just downstream of the leading edge, making this AoA more suitable to investigate the effect of different turbulence modeling approaches. Azimuthal and axial velocity fields are validated against stereographic-particle image velocimetry (S-PIV) measurements. The time-averaged velocity profiles predicted by delayed detached-eddy simulation (DDES) and improved delayed detached-eddy simulation (IDDES) are close to the experiments; however, no velocity fluctuations and vortex dynamics are observed around the vortex. A comparison of wetted and cavitating simulations shows that the cavity leads to a change in the balance between production and destruction of turbulence kinetic energy, which reduces the turbulent diffusion in and around the cavity compared to wetted flow conditions. Consequently, the vapor flow exhibits the characteristics of a potential flow. Whether this is physically plausible remains to be investigated.
    • Download: (4.207Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277171
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorLiebrand, Rens
    contributor authorKlapwijk, Maarten
    contributor authorLloyd, Thomas
    contributor authorVaz, Guilherme
    date accessioned2022-02-05T22:13:56Z
    date available2022-02-05T22:13:56Z
    date copyright10/5/2020 12:00:00 AM
    date issued2020
    identifier issn0098-2202
    identifier otherfe_143_01_011202.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277171
    description abstractThis study evaluates the influence of transition and turbulence modeling on the prediction of wetted and cavitating tip vortices for an elliptical wing, while investigating the numerical errors. Transition modeling increases the quality of numerical predictions since the assumption of a fully turbulent boundary layer, commonly found in literature, contributes to underprediction of the tip vortex cavity size. By applying the local correlation-based transition model (LCTM) and controlling the boundary layer thickness using different turbulent inflow conditions, the pressure in the vortex was found to reduce by 20% for an Angle of Attack (AoA) of 5 deg. The consequent increase in cavity size was found to be of a similar order of magnitude. At 9 deg AoA, transition always occurs just downstream of the leading edge, making this AoA more suitable to investigate the effect of different turbulence modeling approaches. Azimuthal and axial velocity fields are validated against stereographic-particle image velocimetry (S-PIV) measurements. The time-averaged velocity profiles predicted by delayed detached-eddy simulation (DDES) and improved delayed detached-eddy simulation (IDDES) are close to the experiments; however, no velocity fluctuations and vortex dynamics are observed around the vortex. A comparison of wetted and cavitating simulations shows that the cavity leads to a change in the balance between production and destruction of turbulence kinetic energy, which reduces the turbulent diffusion in and around the cavity compared to wetted flow conditions. Consequently, the vapor flow exhibits the characteristics of a potential flow. Whether this is physically plausible remains to be investigated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTransition and Turbulence Modeling for the Prediction of Cavitating Tip Vortices
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4048133
    journal fristpage011202-1
    journal lastpage011202-14
    page14
    treeJournal of Fluids Engineering:;2020:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian