YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of the Predictive Capability of VERA—CS for CASL Challenge Problems

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2021:;volume( 006 ):;issue: 002::page 021003-1
    Author:
    Athe, Paridhi
    ,
    Jones, Christopher
    ,
    Dinh, Nam
    DOI: 10.1115/1.4050248
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes the process for assessing the predictive capability of the Consortium for the advanced simulation of light-water reactors (CASL) virtual environment for reactor applications code suite (VERA—CS) for different challenge problems. The assessment process is guided by the two qualitative frameworks, i.e., phenomena identification and ranking table (PIRT) and predictive capability maturity model (PCMM). The capability and credibility of VERA codes (individual and coupled simulation codes) are evaluated. Capability refers to evidence of required functionality for capturing phenomena of interest while credibility refers to the evidence that provides confidence in the calculated results. For this assessment, each challenge problem defines a set of phenomenological requirements (based on PIRT) against which the VERA software is evaluated. This approach, in turn, enables the focused assessment of only those capabilities that are relevant to the challenge problem. The credibility assessment using PCMM is based on different decision attributes that encompass verification, validation, and uncertainty quantification (VVUQ) of the CASL codes. For each attribute, a maturity score from zero to three is assigned to ascertain the acquired maturity level of the VERA codes with respect to the challenge problem. Credibility in the assessment is established by mapping relevant evidence obtained from VVUQ of codes to the corresponding PCMM attribute. The illustration of the proposed approach is presented using one of the CASL challenge problems called chalk river unidentified deposit (CRUD) induced power shift (CIPS). The assessment framework described in this paper can be considered applicable to other M & S code development efforts.
    • Download: (1.237Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of the Predictive Capability of VERA—CS for CASL Challenge Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277103
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorAthe, Paridhi
    contributor authorJones, Christopher
    contributor authorDinh, Nam
    date accessioned2022-02-05T22:11:50Z
    date available2022-02-05T22:11:50Z
    date copyright3/15/2021 12:00:00 AM
    date issued2021
    identifier issn2377-2158
    identifier othervvuq_006_02_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277103
    description abstractThis paper describes the process for assessing the predictive capability of the Consortium for the advanced simulation of light-water reactors (CASL) virtual environment for reactor applications code suite (VERA—CS) for different challenge problems. The assessment process is guided by the two qualitative frameworks, i.e., phenomena identification and ranking table (PIRT) and predictive capability maturity model (PCMM). The capability and credibility of VERA codes (individual and coupled simulation codes) are evaluated. Capability refers to evidence of required functionality for capturing phenomena of interest while credibility refers to the evidence that provides confidence in the calculated results. For this assessment, each challenge problem defines a set of phenomenological requirements (based on PIRT) against which the VERA software is evaluated. This approach, in turn, enables the focused assessment of only those capabilities that are relevant to the challenge problem. The credibility assessment using PCMM is based on different decision attributes that encompass verification, validation, and uncertainty quantification (VVUQ) of the CASL codes. For each attribute, a maturity score from zero to three is assigned to ascertain the acquired maturity level of the VERA codes with respect to the challenge problem. Credibility in the assessment is established by mapping relevant evidence obtained from VVUQ of codes to the corresponding PCMM attribute. The illustration of the proposed approach is presented using one of the CASL challenge problems called chalk river unidentified deposit (CRUD) induced power shift (CIPS). The assessment framework described in this paper can be considered applicable to other M & S code development efforts.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of the Predictive Capability of VERA—CS for CASL Challenge Problems
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4050248
    journal fristpage021003-1
    journal lastpage021003-17
    page17
    treeJournal of Verification, Validation and Uncertainty Quantification:;2021:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian