YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Bayesian Analysis to Quantify Uncertainty in Radiometer Measurements

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2021:;volume( 006 ):;issue: 001::page 011003-1
    Author:
    Spinti, Jennifer P.
    ,
    Smith, Sean T.
    ,
    Smith, Philip J.
    ,
    Harding, N. Stanley
    ,
    Scheib, Kaitlyn
    ,
    Draper, Teri S.
    DOI: 10.1115/1.4049301
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We apply Bayesian inference to instrument calibration and experimental-data uncertainty analysis for the specific application of measuring radiative intensity with a narrow-angle radiometer. We develop a physics-based instrument model that describes temporally varying radiative intensity, the indirectly measured quantity of interest, as a function of scenario and model parameters. We identify a set of five uncertain parameters, find their probability distributions (the posterior or inverse problem) given the calibration data by applying Bayes' Theorem, and employ a local linearization to marginalize the nuisance parameters resulting from errors-in-variables. We then apply the instrument model to a new scenario that is the intended use of the instrument, a 1.5 MW coal-fired furnace. Unlike standard error propagation, this Bayesian method infers values for the five uncertain parameters by sampling from the posterior distribution and then computing the intensity with quantifiable uncertainty at the point of a new, in situ furnace measurement (the posterior predictive or forward problem). Given the instrument-model context of this analysis, the propagated uncertainty provides a significant proportion of the measurement error for each in situ furnace measurement. With this approach, we produce uncertainties at each temporal measurement of the radiative intensity in the furnace, successfully identifying temporal variations that were otherwise indistinguishable from measurement uncertainty.
    • Download: (1.714Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Bayesian Analysis to Quantify Uncertainty in Radiometer Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277096
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorSpinti, Jennifer P.
    contributor authorSmith, Sean T.
    contributor authorSmith, Philip J.
    contributor authorHarding, N. Stanley
    contributor authorScheib, Kaitlyn
    contributor authorDraper, Teri S.
    date accessioned2022-02-05T22:11:39Z
    date available2022-02-05T22:11:39Z
    date copyright1/13/2021 12:00:00 AM
    date issued2021
    identifier issn2377-2158
    identifier othervvuq_006_01_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277096
    description abstractWe apply Bayesian inference to instrument calibration and experimental-data uncertainty analysis for the specific application of measuring radiative intensity with a narrow-angle radiometer. We develop a physics-based instrument model that describes temporally varying radiative intensity, the indirectly measured quantity of interest, as a function of scenario and model parameters. We identify a set of five uncertain parameters, find their probability distributions (the posterior or inverse problem) given the calibration data by applying Bayes' Theorem, and employ a local linearization to marginalize the nuisance parameters resulting from errors-in-variables. We then apply the instrument model to a new scenario that is the intended use of the instrument, a 1.5 MW coal-fired furnace. Unlike standard error propagation, this Bayesian method infers values for the five uncertain parameters by sampling from the posterior distribution and then computing the intensity with quantifiable uncertainty at the point of a new, in situ furnace measurement (the posterior predictive or forward problem). Given the instrument-model context of this analysis, the propagated uncertainty provides a significant proportion of the measurement error for each in situ furnace measurement. With this approach, we produce uncertainties at each temporal measurement of the radiative intensity in the furnace, successfully identifying temporal variations that were otherwise indistinguishable from measurement uncertainty.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUsing Bayesian Analysis to Quantify Uncertainty in Radiometer Measurements
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4049301
    journal fristpage011003-1
    journal lastpage011003-10
    page10
    treeJournal of Verification, Validation and Uncertainty Quantification:;2021:;volume( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian