Code Verification of a Pressure-Based Solver for Subsonic Compressible FlowsSource: Journal of Verification, Validation and Uncertainty Quantification:;2020:;volume( 005 ):;issue: 004::page 041001-1DOI: 10.1115/1.4048750Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Although most flows in maritime applications can be modeled as incompressible, for certain phenomena like sloshing, slamming, and cavitation, this approximation falls short. For these events, it is necessary to consider compressibility effects. This paper presents the first step toward a solver for multiphase compressible flows: a single-phase compressible flow solver for perfect gases. The main purpose of this work is code verification of the solver using the method of manufactured solutions. For the sake of completeness, the governing equations are described in detail including the changes to the SIMPLE algorithm used in the incompressible flow solver to ensure mass conservation and pressure–velocity–density coupling. A manufactured solution for laminar subsonic flow was therefore designed. With properly defined boundary conditions, the observed order of grid convergence matches the formal order, so it can be concluded that the flow solver is free of coding mistakes, to the extent tested by the method of manufactured solutions. The performance of the pressure-based SIMPLE solver is quantified by reporting iteration counts for all grids. Furthermore, the use of pressure–weighted interpolation (PWI), also known as Rhie–Chow interpolation, to avoid spurious pressure oscillations in incompressible flow, though not strictly necessary for compressible flow, does show some benefits in the low Mach number range.
|
Show full item record
| contributor author | Muralha, João | |
| contributor author | Eça, Luís | |
| contributor author | Klaij, Christiaan M. | |
| date accessioned | 2022-02-05T22:11:17Z | |
| date available | 2022-02-05T22:11:17Z | |
| date copyright | 10/29/2020 12:00:00 AM | |
| date issued | 2020 | |
| identifier issn | 2377-2158 | |
| identifier other | vvuq_005_04_041001.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4277087 | |
| description abstract | Although most flows in maritime applications can be modeled as incompressible, for certain phenomena like sloshing, slamming, and cavitation, this approximation falls short. For these events, it is necessary to consider compressibility effects. This paper presents the first step toward a solver for multiphase compressible flows: a single-phase compressible flow solver for perfect gases. The main purpose of this work is code verification of the solver using the method of manufactured solutions. For the sake of completeness, the governing equations are described in detail including the changes to the SIMPLE algorithm used in the incompressible flow solver to ensure mass conservation and pressure–velocity–density coupling. A manufactured solution for laminar subsonic flow was therefore designed. With properly defined boundary conditions, the observed order of grid convergence matches the formal order, so it can be concluded that the flow solver is free of coding mistakes, to the extent tested by the method of manufactured solutions. The performance of the pressure-based SIMPLE solver is quantified by reporting iteration counts for all grids. Furthermore, the use of pressure–weighted interpolation (PWI), also known as Rhie–Chow interpolation, to avoid spurious pressure oscillations in incompressible flow, though not strictly necessary for compressible flow, does show some benefits in the low Mach number range. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Code Verification of a Pressure-Based Solver for Subsonic Compressible Flows | |
| type | Journal Paper | |
| journal volume | 5 | |
| journal issue | 4 | |
| journal title | Journal of Verification, Validation and Uncertainty Quantification | |
| identifier doi | 10.1115/1.4048750 | |
| journal fristpage | 041001-1 | |
| journal lastpage | 041001-11 | |
| page | 11 | |
| tree | Journal of Verification, Validation and Uncertainty Quantification:;2020:;volume( 005 ):;issue: 004 | |
| contenttype | Fulltext |