YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Modal Interactions on Friction-Damped Self-Excited Vibrations

    Source: Journal of Vibration and Acoustics:;2020:;volume( 143 ):;issue: 003::page 031003-1
    Author:
    Woiwode, Lukas
    ,
    Gross, Johann
    ,
    Krack, Malte
    DOI: 10.1115/1.4048396
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: It is well-known that nonlinear dry friction damping has the potential to bound the otherwise unboundedly growing vibrations of self-excited structures. An important technical example are the flutter-induced friction-damped limit cycle oscillations of turbomachinery blade rows. Due to symmetries, natural frequencies are inevitably closely spaced, and they can generally be multiples of each other. Not much is known on the nonlinear dynamics of self-excited friction-damped systems in the presence of such internal resonances. In this work, we analyze this situation numerically by regarding a two degrees-of-freedom system. We demonstrate that in the case of closely-spaced natural frequencies, the self-excitation of the lower-frequency mode gives rise to non-periodic oscillations, and the occurrence of unbounded behavior well before reaching the maximum friction damping value. If the system is close to a 1:3 internal resonance, limit cycles associated with much higher frictional damping appear, however, most of these are unstable. If more than one mode is subjected to self-excitation, the maximum resistance against self-excitation is at least given by the damping capacity of the most weakly friction-damped mode. These results are of high technical relevance, as the prevailing practice is to analyze only periodic limit states and argue the stability solely by the slope of the damping-amplitude curve. Our results demonstrate that this practice leads to considerable mis- and overestimation of the resistance against self-excitation, and a more rigorous stability analysis is required.
    • Download: (1.563Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Modal Interactions on Friction-Damped Self-Excited Vibrations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277024
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorWoiwode, Lukas
    contributor authorGross, Johann
    contributor authorKrack, Malte
    date accessioned2022-02-05T22:09:29Z
    date available2022-02-05T22:09:29Z
    date copyright10/6/2020 12:00:00 AM
    date issued2020
    identifier issn1048-9002
    identifier othervib_143_3_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277024
    description abstractIt is well-known that nonlinear dry friction damping has the potential to bound the otherwise unboundedly growing vibrations of self-excited structures. An important technical example are the flutter-induced friction-damped limit cycle oscillations of turbomachinery blade rows. Due to symmetries, natural frequencies are inevitably closely spaced, and they can generally be multiples of each other. Not much is known on the nonlinear dynamics of self-excited friction-damped systems in the presence of such internal resonances. In this work, we analyze this situation numerically by regarding a two degrees-of-freedom system. We demonstrate that in the case of closely-spaced natural frequencies, the self-excitation of the lower-frequency mode gives rise to non-periodic oscillations, and the occurrence of unbounded behavior well before reaching the maximum friction damping value. If the system is close to a 1:3 internal resonance, limit cycles associated with much higher frictional damping appear, however, most of these are unstable. If more than one mode is subjected to self-excitation, the maximum resistance against self-excitation is at least given by the damping capacity of the most weakly friction-damped mode. These results are of high technical relevance, as the prevailing practice is to analyze only periodic limit states and argue the stability solely by the slope of the damping-amplitude curve. Our results demonstrate that this practice leads to considerable mis- and overestimation of the resistance against self-excitation, and a more rigorous stability analysis is required.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Modal Interactions on Friction-Damped Self-Excited Vibrations
    typeJournal Paper
    journal volume143
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4048396
    journal fristpage031003-1
    journal lastpage031003-11
    page11
    treeJournal of Vibration and Acoustics:;2020:;volume( 143 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian