YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Higher Order Conceptual Model for Labyrinth Seal Flutter

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 007::page 071006-1
    Author:
    Corral, Roque
    ,
    Greco, Michele
    ,
    Vega, Almudena
    DOI: 10.1115/1.4050334
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A simple nondimensional model to describe the flutter onset of two-fin straight labyrinth seals (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) is extended to account for nonisentropic flow perturbations. The isentropic relationship is replaced by the more general integral energy equation of the inter-fin cavity. A new expression for the Corral and Vega stability criterion is derived, which is very consistent with the previous model in the whole design space of the seal but for torsion centers located in the high-pressure side close to the seal. The new model formally depends on more dimensionless parameters since the existing parameter grouping of the previous model does not hold anymore, but this dependency is weak in relative terms. The model blends the limit where the discharge time of the inter-fin cavity is much longer than the vibration period, and the flow is nearly isentropic, and the opposite limit, where the perturbations are isothermic, gracefully. A few numerical examples obtained using a three-dimensional linearized frequency domain solver are included to support the model and show that the trends are correct, but the body of the numerical work will be presented in a separated article. The matching between the work-per-cycle obtained with the model and frequency domain solver is good. It is shown that some weird trends obtained using linearized unsteady simulations are qualitatively consistent with the current model but not with the previous one (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006). The largest differences between the new and the previous model are seen when the seal is supported at the high-pressure side.
    • Download: (967.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Higher Order Conceptual Model for Labyrinth Seal Flutter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277014
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCorral, Roque
    contributor authorGreco, Michele
    contributor authorVega, Almudena
    date accessioned2022-02-05T22:09:07Z
    date available2022-02-05T22:09:07Z
    date copyright4/9/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_7_071006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277014
    description abstractA simple nondimensional model to describe the flutter onset of two-fin straight labyrinth seals (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) is extended to account for nonisentropic flow perturbations. The isentropic relationship is replaced by the more general integral energy equation of the inter-fin cavity. A new expression for the Corral and Vega stability criterion is derived, which is very consistent with the previous model in the whole design space of the seal but for torsion centers located in the high-pressure side close to the seal. The new model formally depends on more dimensionless parameters since the existing parameter grouping of the previous model does not hold anymore, but this dependency is weak in relative terms. The model blends the limit where the discharge time of the inter-fin cavity is much longer than the vibration period, and the flow is nearly isentropic, and the opposite limit, where the perturbations are isothermic, gracefully. A few numerical examples obtained using a three-dimensional linearized frequency domain solver are included to support the model and show that the trends are correct, but the body of the numerical work will be presented in a separated article. The matching between the work-per-cycle obtained with the model and frequency domain solver is good. It is shown that some weird trends obtained using linearized unsteady simulations are qualitatively consistent with the current model but not with the previous one (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006). The largest differences between the new and the previous model are seen when the seal is supported at the high-pressure side.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHigher Order Conceptual Model for Labyrinth Seal Flutter
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4050334
    journal fristpage071006-1
    journal lastpage071006-11
    page11
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian