YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow Distortion Into the Core Engine for an Installed Variable Pitch Fan in Reverse Thrust Mode

    Source: Journal of Turbomachinery:;2021:;volume( 143 ):;issue: 007::page 071001-1
    Author:
    Rajendran, David John
    ,
    Pachidis, Vassilios
    DOI: 10.1115/1.4050331
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The flow distortion at core engine entry for a variable pitch fan (VPF) in reverse thrust mode is described from a realistic flow field obtained using an integrated airframe-engine model. The model includes the VPF, core entry splitter, complete bypass nozzle flow path wrapped in a nacelle, and installed to an airframe in landing configuration through a pylon. A moving ground plane to mimic the rolling runway is included. 3D Reynolds-averaged Navier–Stokes (RANS) solutions are generated at two combinations of VPF stagger angle and rotational speed settings for the entire aircraft landing run from 140 to 20 knots. The internal reverse thrust flow field is characterized by bypass nozzle lip separation, pylon wake, and recirculation of flow turned back from the VPF. A portion of the reverse stream flow turns 180 deg with separation at the splitter leading edge to feed the core engine. The core engine feed flow exhibits circumferential and radial nonuniformities that depend on the reverse flow development at different landing speeds. The temporal dependence of the distorted flow features is also explored by an unsteady Reynolds-averaged Navier–Stokes (URANS) analysis. Total pressure and swirl angle distortion descriptors, as defined by the Society of Automotive Engineers (SAE) S-16 committee, and, total pressure loss into the core engine are described for the core feed flow at different operating conditions and landing speeds. It is observed that the radial intensity of total pressure distortion is critical to core engine operation, while the circumferential intensity is within acceptable limits. Therefore, the baseline sharp splitter edge is replaced by two larger rounded splitter edges of radii, ∼0.1x and ∼0.2x times the core duct height. This was found to reduce the radial intensity of total pressure distortion to acceptable levels. The description of the installed core feed flow distortion, as described in this study, is necessary to ascertain stable core engine operation, which powers the VPF in reverse thrust mode.
    • Download: (1.475Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow Distortion Into the Core Engine for an Installed Variable Pitch Fan in Reverse Thrust Mode

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277008
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorRajendran, David John
    contributor authorPachidis, Vassilios
    date accessioned2022-02-05T22:08:58Z
    date available2022-02-05T22:08:58Z
    date copyright4/8/2021 12:00:00 AM
    date issued2021
    identifier issn0889-504X
    identifier otherturbo_143_7_071001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277008
    description abstractThe flow distortion at core engine entry for a variable pitch fan (VPF) in reverse thrust mode is described from a realistic flow field obtained using an integrated airframe-engine model. The model includes the VPF, core entry splitter, complete bypass nozzle flow path wrapped in a nacelle, and installed to an airframe in landing configuration through a pylon. A moving ground plane to mimic the rolling runway is included. 3D Reynolds-averaged Navier–Stokes (RANS) solutions are generated at two combinations of VPF stagger angle and rotational speed settings for the entire aircraft landing run from 140 to 20 knots. The internal reverse thrust flow field is characterized by bypass nozzle lip separation, pylon wake, and recirculation of flow turned back from the VPF. A portion of the reverse stream flow turns 180 deg with separation at the splitter leading edge to feed the core engine. The core engine feed flow exhibits circumferential and radial nonuniformities that depend on the reverse flow development at different landing speeds. The temporal dependence of the distorted flow features is also explored by an unsteady Reynolds-averaged Navier–Stokes (URANS) analysis. Total pressure and swirl angle distortion descriptors, as defined by the Society of Automotive Engineers (SAE) S-16 committee, and, total pressure loss into the core engine are described for the core feed flow at different operating conditions and landing speeds. It is observed that the radial intensity of total pressure distortion is critical to core engine operation, while the circumferential intensity is within acceptable limits. Therefore, the baseline sharp splitter edge is replaced by two larger rounded splitter edges of radii, ∼0.1x and ∼0.2x times the core duct height. This was found to reduce the radial intensity of total pressure distortion to acceptable levels. The description of the installed core feed flow distortion, as described in this study, is necessary to ascertain stable core engine operation, which powers the VPF in reverse thrust mode.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlow Distortion Into the Core Engine for an Installed Variable Pitch Fan in Reverse Thrust Mode
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4050331
    journal fristpage071001-1
    journal lastpage071001-12
    page12
    treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian