YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    NASA's Role in Gas Turbine Technology Development: Accelerating Technical Progress Via Collaboration Between Academia, Industry, and Government Agencies

    Source: Journal of Turbomachinery:;2020:;volume( 143 ):;issue: 001::page 011006-1
    Author:
    Suder, Kenneth L.
    DOI: 10.1115/1.4048696
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Given the maturity of the gas turbine engine since its invention and considering the limited resources expected to be allocated for NASA aeronautics research and development, we ask the question are NASA technology investments still needed to enable future turbine engine-based propulsion systems? If so, what is NASA's unique role to justify NASA's investment? To address this topic, we first summarize NASA's role and contributions to turbine engine development, specific to both (1) NASA's role in conducting experiments to understand flow physics and provide relevant benchmark validation experiments for computational fluid dynamics (CFD) code development, validation, and assessment and (2) the impact of technologies resulting from NASA collaborations with industry, academia, and other government agencies. Note that the scope of the discussion is limited to the NASA technology contributions with which the author was intimately associated and does not represent the entirety of the NASA contributions to turbine engine technology. The specific research, development, and demonstrations discussed herein were selected to both (1) provide a comprehensive review and reference list of the technology and its impact and (2) identify NASA's unique role and highlight how NASA's involvement resulted in additional benefit to the gas turbine engine community. Second, we will discuss current NASA collaborations that are in progress and provide a status of the results. Finally, we discuss the challenges anticipated for future turbine engine-based propulsion systems for civil aviation and identify potential opportunities for collaboration where NASA involvement would be beneficial.
    • Download: (3.720Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      NASA's Role in Gas Turbine Technology Development: Accelerating Technical Progress Via Collaboration Between Academia, Industry, and Government Agencies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276942
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSuder, Kenneth L.
    date accessioned2022-02-05T22:06:55Z
    date available2022-02-05T22:06:55Z
    date copyright12/28/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_143_1_011006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276942
    description abstractGiven the maturity of the gas turbine engine since its invention and considering the limited resources expected to be allocated for NASA aeronautics research and development, we ask the question are NASA technology investments still needed to enable future turbine engine-based propulsion systems? If so, what is NASA's unique role to justify NASA's investment? To address this topic, we first summarize NASA's role and contributions to turbine engine development, specific to both (1) NASA's role in conducting experiments to understand flow physics and provide relevant benchmark validation experiments for computational fluid dynamics (CFD) code development, validation, and assessment and (2) the impact of technologies resulting from NASA collaborations with industry, academia, and other government agencies. Note that the scope of the discussion is limited to the NASA technology contributions with which the author was intimately associated and does not represent the entirety of the NASA contributions to turbine engine technology. The specific research, development, and demonstrations discussed herein were selected to both (1) provide a comprehensive review and reference list of the technology and its impact and (2) identify NASA's unique role and highlight how NASA's involvement resulted in additional benefit to the gas turbine engine community. Second, we will discuss current NASA collaborations that are in progress and provide a status of the results. Finally, we discuss the challenges anticipated for future turbine engine-based propulsion systems for civil aviation and identify potential opportunities for collaboration where NASA involvement would be beneficial.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNASA's Role in Gas Turbine Technology Development: Accelerating Technical Progress Via Collaboration Between Academia, Industry, and Government Agencies
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4048696
    journal fristpage011006-1
    journal lastpage011006-27
    page27
    treeJournal of Turbomachinery:;2020:;volume( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian