YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Internal Versus External Cracking—Their Impact on the Fatigue Life of Modern Smoothbore Autofrettaged Tank Gun Barrels

    Source: Journal of Pressure Vessel Technology:;2020:;volume( 143 ):;issue: 002::page 021504-1
    Author:
    Perl, M.
    ,
    Saley, T.
    DOI: 10.1115/1.4048068
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An extensive analysis of the fatigue life of a typical modern autofrettaged smoothbore tank barrel, cracked either internally or externally, in terms of the initial crack depth and shape, type and level of autofrettage, was conducted. Five overstraining cases were considered: no-autofrettage, 70% and 100% hydraulic autofrettage, and 70% and 100% swage autofrettage. KINmax, the maximum combined stress intensity factor (SIF) KINmax = (KIP + KIA) max, due to both internal pressure and autofrettage, as a function of crack depth for a large number of internal and external crack configurations was determined by the finite element method (FEM). A novel realistic experimentally based autofrettage model, incorporating the Bauschinger effect, was integrated into the finite element model, replicating both the hydraulic and swage autofrettage residual stress fields (RSFs) accurately. Fatigue lives were evaluated by integrating Paris' Law using the above values of KINmax. The following conclusions can be drawn from the results: hydraulic and swage autofrettage have a dramatic beneficial effect in extending the fatigue life of an overstrained barrel 4–11 times as compared to an identical nonautofrettaged tube. The fatigue life of overstrained barrels is controlled by internal cracking, for barrels overstrained by up to ε = 100% hydraulic autofrettage, by up to ε = 70% in the case of swage autofrettage, and by external cracking for ε = 100% swage autofrettaged. Eliminating or carefully designing stress concentrators on the tube's external face and keeping away from corrosive agents thus, extending the fatigue-crack initiation life of an external crack, enables the increase of the level of swage autofrettage to up to ε = 100%. Swage autofrettage is much more superior to hydraulic autofrettage. The fatigue life of a 70% swaged autofrettaged barrel is 1.5 times higher than that of a 100% hydraulically autofrettaged tube. If full swage autofrettage is permissible, the fatigue life of such a barrel is twofold that of a fully hydraulically autofrettaged tube. Unlike the commonly accepted concept, the level of hydraulic autofrettage should not be limited to 70%, and full hydraulic autofrettage should be used. Similarly, in the case of swage autofrettage, if the detrimental effect of external cracking is removed by proper design and maintenance of the tube's outer surface, the level of autofrettage can be increased to up to ε = 100%, thus, gaining an increase of 33% in the fatigue life as compared to overstraining the barrel to only ε = 70%. Initial crack depth and shape are major factors affecting the fatigue life of the barrel. The deeper the initial crack depth, a0, and the slenderer its shape, a/c→ 0, the shorter the fatigue life of the barrel.
    • Download: (1.141Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Internal Versus External Cracking—Their Impact on the Fatigue Life of Modern Smoothbore Autofrettaged Tank Gun Barrels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276640
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorPerl, M.
    contributor authorSaley, T.
    date accessioned2022-02-05T21:57:29Z
    date available2022-02-05T21:57:29Z
    date copyright10/5/2020 12:00:00 AM
    date issued2020
    identifier issn0094-9930
    identifier otherpvt_143_02_021504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276640
    description abstractAn extensive analysis of the fatigue life of a typical modern autofrettaged smoothbore tank barrel, cracked either internally or externally, in terms of the initial crack depth and shape, type and level of autofrettage, was conducted. Five overstraining cases were considered: no-autofrettage, 70% and 100% hydraulic autofrettage, and 70% and 100% swage autofrettage. KINmax, the maximum combined stress intensity factor (SIF) KINmax = (KIP + KIA) max, due to both internal pressure and autofrettage, as a function of crack depth for a large number of internal and external crack configurations was determined by the finite element method (FEM). A novel realistic experimentally based autofrettage model, incorporating the Bauschinger effect, was integrated into the finite element model, replicating both the hydraulic and swage autofrettage residual stress fields (RSFs) accurately. Fatigue lives were evaluated by integrating Paris' Law using the above values of KINmax. The following conclusions can be drawn from the results: hydraulic and swage autofrettage have a dramatic beneficial effect in extending the fatigue life of an overstrained barrel 4–11 times as compared to an identical nonautofrettaged tube. The fatigue life of overstrained barrels is controlled by internal cracking, for barrels overstrained by up to ε = 100% hydraulic autofrettage, by up to ε = 70% in the case of swage autofrettage, and by external cracking for ε = 100% swage autofrettaged. Eliminating or carefully designing stress concentrators on the tube's external face and keeping away from corrosive agents thus, extending the fatigue-crack initiation life of an external crack, enables the increase of the level of swage autofrettage to up to ε = 100%. Swage autofrettage is much more superior to hydraulic autofrettage. The fatigue life of a 70% swaged autofrettaged barrel is 1.5 times higher than that of a 100% hydraulically autofrettaged tube. If full swage autofrettage is permissible, the fatigue life of such a barrel is twofold that of a fully hydraulically autofrettaged tube. Unlike the commonly accepted concept, the level of hydraulic autofrettage should not be limited to 70%, and full hydraulic autofrettage should be used. Similarly, in the case of swage autofrettage, if the detrimental effect of external cracking is removed by proper design and maintenance of the tube's outer surface, the level of autofrettage can be increased to up to ε = 100%, thus, gaining an increase of 33% in the fatigue life as compared to overstraining the barrel to only ε = 70%. Initial crack depth and shape are major factors affecting the fatigue life of the barrel. The deeper the initial crack depth, a0, and the slenderer its shape, a/c→ 0, the shorter the fatigue life of the barrel.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInternal Versus External Cracking—Their Impact on the Fatigue Life of Modern Smoothbore Autofrettaged Tank Gun Barrels
    typeJournal Paper
    journal volume143
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4048068
    journal fristpage021504-1
    journal lastpage021504-10
    page10
    treeJournal of Pressure Vessel Technology:;2020:;volume( 143 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian