YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Wave Energy Absorbed by the Edinburgh Nodding Duck Device in Front of a Vertical Wall

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2021:;volume( 143 ):;issue: 005::page 052003-1
    Author:
    Li, Shu
    ,
    Teng, Bin
    DOI: 10.1115/1.4050424
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An open-source computational fluid dynamics (CFD) package, openfoam, is extended and applied to study the power takeoff (PTO) efficiency absorbed by an Edinburgh nodding duck wave energy converter (WEC) device installed in front of a vertical wall. The duck WEC device is axis-fixed by a rigid cantilever beam extended from the vertical wall. After numerical validations and convergent verifications, the characteristics of the duck WEC device for power takeoff with various distances between the rotation center of the duck WEC device and the vertical wall are examined. The present numerical investigation illustrates that the absorbing efficiency by the duck WEC device is insensitive to the distance when subjected to incident waves of higher frequencies, while sensitive when subjected to incident waves of lower frequencies. Furthermore, for incident waves of lower frequencies, when the distance is approximately 0.58 times of the wavelength, a lower absorbing efficiency is achieved. While a higher absorbing efficiency is achieved, when the distance is approximately 0.32 times of the wavelength. Besides, the wave-induced force and torque impacting on the vertical wall are checked. It is found that both the force and torque significantly decrease when the distance is approximately 0.32 times of the wavelength, owing to the installation of the duck WEC device in front of the vertical wall.
    • Download: (1.933Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Wave Energy Absorbed by the Edinburgh Nodding Duck Device in Front of a Vertical Wall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276622
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorLi, Shu
    contributor authorTeng, Bin
    date accessioned2022-02-05T21:56:53Z
    date available2022-02-05T21:56:53Z
    date copyright3/24/2021 12:00:00 AM
    date issued2021
    identifier issn0892-7219
    identifier otheromae_143_5_052003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276622
    description abstractAn open-source computational fluid dynamics (CFD) package, openfoam, is extended and applied to study the power takeoff (PTO) efficiency absorbed by an Edinburgh nodding duck wave energy converter (WEC) device installed in front of a vertical wall. The duck WEC device is axis-fixed by a rigid cantilever beam extended from the vertical wall. After numerical validations and convergent verifications, the characteristics of the duck WEC device for power takeoff with various distances between the rotation center of the duck WEC device and the vertical wall are examined. The present numerical investigation illustrates that the absorbing efficiency by the duck WEC device is insensitive to the distance when subjected to incident waves of higher frequencies, while sensitive when subjected to incident waves of lower frequencies. Furthermore, for incident waves of lower frequencies, when the distance is approximately 0.58 times of the wavelength, a lower absorbing efficiency is achieved. While a higher absorbing efficiency is achieved, when the distance is approximately 0.32 times of the wavelength. Besides, the wave-induced force and torque impacting on the vertical wall are checked. It is found that both the force and torque significantly decrease when the distance is approximately 0.32 times of the wavelength, owing to the installation of the duck WEC device in front of the vertical wall.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of Wave Energy Absorbed by the Edinburgh Nodding Duck Device in Front of a Vertical Wall
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4050424
    journal fristpage052003-1
    journal lastpage052003-14
    page14
    treeJournal of Offshore Mechanics and Arctic Engineering:;2021:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian