YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations of Turbulent Flow Through an Orifice Plate in a Pipe

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2021:;volume( 143 ):;issue: 004::page 041903-1
    Author:
    Yin, Guang
    ,
    Nitter, Bjørnar
    ,
    Ong, Muk Chen
    DOI: 10.1115/1.4049250
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Orifice flowmeters are widely used in industries to measure the flowrate in pipelines. The flowrate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations combined with the k–ω shear-stress transport (SST) turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40,000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2, and the orifice diameter to pipe diameter (β) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity, and vorticity distribution in the orifice are discussed in detail. It is found that for the fixed β, the discharge coefficient increases with the increasing t, and the vortical structure inside the orifice is separated into two regions located at the two edges of the orifice. For the fixed t, the size of the large recirculation motions behind the plate increases, and the vorticity around the plate becomes stronger with the decreasing β.
    • Download: (1.389Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations of Turbulent Flow Through an Orifice Plate in a Pipe

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276598
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorYin, Guang
    contributor authorNitter, Bjørnar
    contributor authorOng, Muk Chen
    date accessioned2022-02-05T21:56:04Z
    date available2022-02-05T21:56:04Z
    date copyright1/12/2021 12:00:00 AM
    date issued2021
    identifier issn0892-7219
    identifier otheromae_143_4_041903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276598
    description abstractOrifice flowmeters are widely used in industries to measure the flowrate in pipelines. The flowrate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations combined with the k–ω shear-stress transport (SST) turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40,000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2, and the orifice diameter to pipe diameter (β) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity, and vorticity distribution in the orifice are discussed in detail. It is found that for the fixed β, the discharge coefficient increases with the increasing t, and the vortical structure inside the orifice is separated into two regions located at the two edges of the orifice. For the fixed t, the size of the large recirculation motions behind the plate increases, and the vorticity around the plate becomes stronger with the decreasing β.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Simulations of Turbulent Flow Through an Orifice Plate in a Pipe
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4049250
    journal fristpage041903-1
    journal lastpage041903-11
    page11
    treeJournal of Offshore Mechanics and Arctic Engineering:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian