YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer in Supercritical Fluids: A Review

    Source: Journal of Nuclear Engineering and Radiation Science:;2021:;volume( 007 ):;issue: 003::page 030802-1
    Author:
    Bodkha, Kapil
    ,
    Maheshwari, N. K.
    DOI: 10.1115/1.4048898
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Supercritical fluids (SCF) find potential applications in the upcoming energy systems due to various advantages associated with them. One of such applications is nuclear reactor where supercritical water and carbon-dioxide, both are proposed as the coolants in advanced reactor designs. Higher efficiency, simplified systems, lower operational costs are some of the advantages which propels the research fraternity to employ these fluids in application. However, there are also some challenges associated with the use of these fluids. Heat transfer behavior of these fluids is one among them. As SCF undergo tremendous changes in thermophysical properties across pseudo-critical temperature, heat transfer may get affected. It may get enhanced, deteriorated or remain unaltered. Various studies, experimental and analytical, have been carried out in the past using SCF to evaluate their heat transfer behavior. Various heat transfer correlations have been proposed by researchers catering to different operating range of parameters. Also, studies have been dedicated by researchers to investigate fluid-to-fluid scaling of SCF based on which scaling laws were proposed by them. This way prototypic fluid behavior can be predicted if the model fluid conditions are known. This paper presents a latest review of the scaling laws and heat transfer correlations applicable to SC fluids. Illustrations have also been presented considering reference experimental data from literature to get a feel about how these scaling laws fare among themselves. Various heat transfer correlations have been compared and important observations have also been discussed in this article.
    • Download: (5.501Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer in Supercritical Fluids: A Review

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276530
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorBodkha, Kapil
    contributor authorMaheshwari, N. K.
    date accessioned2022-02-05T21:53:41Z
    date available2022-02-05T21:53:41Z
    date copyright2/19/2021 12:00:00 AM
    date issued2021
    identifier issn2332-8983
    identifier otherners_007_03_030802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276530
    description abstractSupercritical fluids (SCF) find potential applications in the upcoming energy systems due to various advantages associated with them. One of such applications is nuclear reactor where supercritical water and carbon-dioxide, both are proposed as the coolants in advanced reactor designs. Higher efficiency, simplified systems, lower operational costs are some of the advantages which propels the research fraternity to employ these fluids in application. However, there are also some challenges associated with the use of these fluids. Heat transfer behavior of these fluids is one among them. As SCF undergo tremendous changes in thermophysical properties across pseudo-critical temperature, heat transfer may get affected. It may get enhanced, deteriorated or remain unaltered. Various studies, experimental and analytical, have been carried out in the past using SCF to evaluate their heat transfer behavior. Various heat transfer correlations have been proposed by researchers catering to different operating range of parameters. Also, studies have been dedicated by researchers to investigate fluid-to-fluid scaling of SCF based on which scaling laws were proposed by them. This way prototypic fluid behavior can be predicted if the model fluid conditions are known. This paper presents a latest review of the scaling laws and heat transfer correlations applicable to SC fluids. Illustrations have also been presented considering reference experimental data from literature to get a feel about how these scaling laws fare among themselves. Various heat transfer correlations have been compared and important observations have also been discussed in this article.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer in Supercritical Fluids: A Review
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4048898
    journal fristpage030802-1
    journal lastpage030802-19
    page19
    treeJournal of Nuclear Engineering and Radiation Science:;2021:;volume( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian