YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of the Super Critical Water Loop Using ATHLET Code During an Abnormal Scenario

    Source: Journal of Nuclear Engineering and Radiation Science:;2021:;volume( 007 ):;issue: 002::page 021404-1
    Author:
    Mazzini, Guido
    ,
    Musa, Alis
    ,
    Fukac, Rostilav
    DOI: 10.1115/1.4050207
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Supercritical water (SCW) has advantages like high thermal efficiency and can operate at high temperature and pressure. At the same time, however, these properties bring up related issues, such as material compatibility and corrosion resistance. In an effort to fully investigate the operating conditions, and solutions to these issues, test facilities are being built by many research organizations. One such organization, the Research Center Řež (CVR) located in the Czech Republic, has developed an experimental supercritical water loop (SCWL). The purpose of this loop is to provide experimental data from material testing in various conditions, including operating under the neutron field. This will be achieved by inserting a test channel into the existing experimental reactor light water reactor 15 (LVR-15), which will require a license from the state nuclear regulator (State Office for Nuclear Safety (SUJB)). Part of the licensing documentation is the safety analysis, which combines results from developed models using the thermohydraulic code ATHLET 3.1 A patch 1, as well as the experimental out of pile data. Among the postulated scenarios, an abnormal sequence (labeled A2—Loss of power in the loop) was analyzed in order to provide a preliminary benchmark. This scenario is similar to the postulated in-pile A2 and it was used for the benchmark activity. The aim of this paper is to present this activity including the adopted assumptions in the model. In particular, the paper presents, how these assumptions influenced the results indicating the discrepancies obtained in the first part of the transient.
    • Download: (796.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of the Super Critical Water Loop Using ATHLET Code During an Abnormal Scenario

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276499
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorMazzini, Guido
    contributor authorMusa, Alis
    contributor authorFukac, Rostilav
    date accessioned2022-02-05T21:52:27Z
    date available2022-02-05T21:52:27Z
    date copyright3/10/2021 12:00:00 AM
    date issued2021
    identifier issn2332-8983
    identifier otherners_007_02_021404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276499
    description abstractSupercritical water (SCW) has advantages like high thermal efficiency and can operate at high temperature and pressure. At the same time, however, these properties bring up related issues, such as material compatibility and corrosion resistance. In an effort to fully investigate the operating conditions, and solutions to these issues, test facilities are being built by many research organizations. One such organization, the Research Center Řež (CVR) located in the Czech Republic, has developed an experimental supercritical water loop (SCWL). The purpose of this loop is to provide experimental data from material testing in various conditions, including operating under the neutron field. This will be achieved by inserting a test channel into the existing experimental reactor light water reactor 15 (LVR-15), which will require a license from the state nuclear regulator (State Office for Nuclear Safety (SUJB)). Part of the licensing documentation is the safety analysis, which combines results from developed models using the thermohydraulic code ATHLET 3.1 A patch 1, as well as the experimental out of pile data. Among the postulated scenarios, an abnormal sequence (labeled A2—Loss of power in the loop) was analyzed in order to provide a preliminary benchmark. This scenario is similar to the postulated in-pile A2 and it was used for the benchmark activity. The aim of this paper is to present this activity including the adopted assumptions in the model. In particular, the paper presents, how these assumptions influenced the results indicating the discrepancies obtained in the first part of the transient.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimulation of the Super Critical Water Loop Using ATHLET Code During an Abnormal Scenario
    typeJournal Paper
    journal volume7
    journal issue2
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4050207
    journal fristpage021404-1
    journal lastpage021404-6
    page6
    treeJournal of Nuclear Engineering and Radiation Science:;2021:;volume( 007 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian