YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unequivocally Nonconservative Results From One Method of Imperfection Quantification in RCC-MR

    Source: Journal of Nuclear Engineering and Radiation Science:;2020:;volume( 007 ):;issue: 001::page 011801-1
    Author:
    Kumar, Ashok
    ,
    Chatterjee, Anindya
    DOI: 10.1115/1.4047494
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Design against buckling of thin shells at high temperatures often follows the code RCC-MR. RCC-MR allows three methods to quantify shell imperfections for use in safe load calculations, where lower imperfection values raise the safe load estimates. In recent work, we showed that the third of these methods can sometimes yield remarkably low imperfection values, leading to potentially nonconservative designs, but nonconservatism of the method was not proved. Here, we prove nonconservatism in two designs based on the third method. Proving such nonconservatism is difficult using experiments or with large material nonlinearity in simulations. We first discuss these difficulties to motivate our approach. We then present two examples: a spherical shell and a torispherical shell, both under external pressure. The shell walls are thin enough so that plasticity is not encountered before structural collapse. For specific shape imperfections, we show with geometrically nonlinear, purely elastic, highly refined, post-buckling analysis using abaqus that the physical loads at which the imperfect shells collapse are overpredicted via RCC-MR's third method by factors of about 8/7 and 11/10, respectively. We emphasize that code-based design using nonlinear simulation prescribes a further safety factor of 2.5, which we have denied ourselves here in order to give the third method the benefit of doubt. We conclude that the third imperfection quantification method in RCC-MR should be reexamined.
    • Download: (1.674Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unequivocally Nonconservative Results From One Method of Imperfection Quantification in RCC-MR

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276484
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorKumar, Ashok
    contributor authorChatterjee, Anindya
    date accessioned2022-02-05T21:51:58Z
    date available2022-02-05T21:51:58Z
    date copyright10/5/2020 12:00:00 AM
    date issued2020
    identifier issn2332-8983
    identifier otherners_007_01_011801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276484
    description abstractDesign against buckling of thin shells at high temperatures often follows the code RCC-MR. RCC-MR allows three methods to quantify shell imperfections for use in safe load calculations, where lower imperfection values raise the safe load estimates. In recent work, we showed that the third of these methods can sometimes yield remarkably low imperfection values, leading to potentially nonconservative designs, but nonconservatism of the method was not proved. Here, we prove nonconservatism in two designs based on the third method. Proving such nonconservatism is difficult using experiments or with large material nonlinearity in simulations. We first discuss these difficulties to motivate our approach. We then present two examples: a spherical shell and a torispherical shell, both under external pressure. The shell walls are thin enough so that plasticity is not encountered before structural collapse. For specific shape imperfections, we show with geometrically nonlinear, purely elastic, highly refined, post-buckling analysis using abaqus that the physical loads at which the imperfect shells collapse are overpredicted via RCC-MR's third method by factors of about 8/7 and 11/10, respectively. We emphasize that code-based design using nonlinear simulation prescribes a further safety factor of 2.5, which we have denied ourselves here in order to give the third method the benefit of doubt. We conclude that the third imperfection quantification method in RCC-MR should be reexamined.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnequivocally Nonconservative Results From One Method of Imperfection Quantification in RCC-MR
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4047494
    journal fristpage011801-1
    journal lastpage011801-11
    page11
    treeJournal of Nuclear Engineering and Radiation Science:;2020:;volume( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian