YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Other Metallic Phase in Spent Nuclear Fuel: A Complete Thermodynamic Evaluation of the U–Pd–Rh–Ru System

    Source: Journal of Nuclear Engineering and Radiation Science:;2020:;volume( 007 ):;issue: 001::page 011601-1
    Author:
    Wang, Lian-Cheng
    ,
    Kaye, Matthew H.
    DOI: 10.1115/1.4046784
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: During burnup of nuclear fuel, fission products accumulate. Post-irradiation examination of burned up nuclear fuel has revealed the presence of several phases, namely, the fuel matrix of UO2, with dissolved oxides present; a white metallic phase consisting of the so-called “noble metals” (i.e., Mo–Ru–Pd–Rh–Tc); a gray oxide phase consisting of alkali or alkaline earth oxides (e.g., BaZrO3 or Cs2UO4); and an another metallic inclusion containing a mixture of UPd3–URh3–URu3, which is not completely assessed due to the lack of phase diagrams of the UPd3–URh3, URh3–URu3, and UPd3–URu3. Understanding how these phases behave becomes especially important from a safety perspective, if one considers a potential accident scenario. The quaternary system U–Pd–Rh–Ru has been evaluated and a thermodynamic model has been developed by first considering the six binary subsystems and the four ternary subsystems. A critical examination of the U–Pd, U–Rh, and U–Ru experimental phase diagrams has been made, with attention placed on both the solution phases, generally present on the uranium side of the diagrams and the UPd3–URh3–URu3 compounds. Finally, the implications of this new model and its potential refinements of the Royal Military College of Canada nuclear fuel treatment developed by previous authors (notably the RMCC group under Thompson and Lewis) will be explored.
    • Download: (1.371Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Other Metallic Phase in Spent Nuclear Fuel: A Complete Thermodynamic Evaluation of the U–Pd–Rh–Ru System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276475
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorWang, Lian-Cheng
    contributor authorKaye, Matthew H.
    date accessioned2022-02-05T21:51:39Z
    date available2022-02-05T21:51:39Z
    date copyright10/1/2020 12:00:00 AM
    date issued2020
    identifier issn2332-8983
    identifier otherners_007_01_011601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276475
    description abstractDuring burnup of nuclear fuel, fission products accumulate. Post-irradiation examination of burned up nuclear fuel has revealed the presence of several phases, namely, the fuel matrix of UO2, with dissolved oxides present; a white metallic phase consisting of the so-called “noble metals” (i.e., Mo–Ru–Pd–Rh–Tc); a gray oxide phase consisting of alkali or alkaline earth oxides (e.g., BaZrO3 or Cs2UO4); and an another metallic inclusion containing a mixture of UPd3–URh3–URu3, which is not completely assessed due to the lack of phase diagrams of the UPd3–URh3, URh3–URu3, and UPd3–URu3. Understanding how these phases behave becomes especially important from a safety perspective, if one considers a potential accident scenario. The quaternary system U–Pd–Rh–Ru has been evaluated and a thermodynamic model has been developed by first considering the six binary subsystems and the four ternary subsystems. A critical examination of the U–Pd, U–Rh, and U–Ru experimental phase diagrams has been made, with attention placed on both the solution phases, generally present on the uranium side of the diagrams and the UPd3–URh3–URu3 compounds. Finally, the implications of this new model and its potential refinements of the Royal Military College of Canada nuclear fuel treatment developed by previous authors (notably the RMCC group under Thompson and Lewis) will be explored.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Other Metallic Phase in Spent Nuclear Fuel: A Complete Thermodynamic Evaluation of the U–Pd–Rh–Ru System
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4046784
    journal fristpage011601-1
    journal lastpage011601-10
    page10
    treeJournal of Nuclear Engineering and Radiation Science:;2020:;volume( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian