YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resource-Constrained Scheduling for Multi-Robot Cooperative Three-Dimensional Printing

    Source: Journal of Mechanical Design:;2021:;volume( 143 ):;issue: 007::page 072002-1
    Author:
    Poudel, Laxmi
    ,
    Zhou, Wenchao
    ,
    Sha, Zhenghui
    DOI: 10.1115/1.4050380
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cooperative three-dimensional (3D) printing (C3DP)—a representative realization of cooperative manufacturing (CM)—is a novel approach that utilizes multiple mobile 3D printing robots for additive manufacturing (AM). It makes the make-span much shorter compared with traditional 3D printing due to parallel printing. In C3DP, collision-free scheduling is critical to the realization of cooperation and parallel operation among mobile printers. In the extant literature, there is a lack of methods to schedule multi-robot C3DP with limited resources. This study addresses this gap with two methods. The first method, dynamic dependency list algorithm (DDLA), uses a constraint-satisfaction approach to eliminate solutions that could result in collisions between robots and collisions between robots with already-printed materials. The second method, modified genetic algorithm (GA), uses chromosomes to represent chunk assignments and utilizes GA operators, such as the crossover and mutation, to generate diverse print schedules while maintaining the dependencies between chunks. Three case studies, including two large rectangular bars in different scales and a foldable sport utility vehicle (SUV), are used to demonstrate the effectiveness and performance of the two methods. The results show that both methods can effectively generate valid print schedules using a specified number of robots while attempting to minimize the make-span. The results also show that both methods generate a print schedule with equal print time for the first two case studies with homogeneous chunks. In contrast, the modified GA outperforms the DDLA in the third case study, where the chunks are heterogeneous in volume and require different times to print.
    • Download: (1.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resource-Constrained Scheduling for Multi-Robot Cooperative Three-Dimensional Printing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276348
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorPoudel, Laxmi
    contributor authorZhou, Wenchao
    contributor authorSha, Zhenghui
    date accessioned2022-02-05T21:47:37Z
    date available2022-02-05T21:47:37Z
    date copyright4/1/2021 12:00:00 AM
    date issued2021
    identifier issn1050-0472
    identifier othermd_143_7_072002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276348
    description abstractCooperative three-dimensional (3D) printing (C3DP)—a representative realization of cooperative manufacturing (CM)—is a novel approach that utilizes multiple mobile 3D printing robots for additive manufacturing (AM). It makes the make-span much shorter compared with traditional 3D printing due to parallel printing. In C3DP, collision-free scheduling is critical to the realization of cooperation and parallel operation among mobile printers. In the extant literature, there is a lack of methods to schedule multi-robot C3DP with limited resources. This study addresses this gap with two methods. The first method, dynamic dependency list algorithm (DDLA), uses a constraint-satisfaction approach to eliminate solutions that could result in collisions between robots and collisions between robots with already-printed materials. The second method, modified genetic algorithm (GA), uses chromosomes to represent chunk assignments and utilizes GA operators, such as the crossover and mutation, to generate diverse print schedules while maintaining the dependencies between chunks. Three case studies, including two large rectangular bars in different scales and a foldable sport utility vehicle (SUV), are used to demonstrate the effectiveness and performance of the two methods. The results show that both methods can effectively generate valid print schedules using a specified number of robots while attempting to minimize the make-span. The results also show that both methods generate a print schedule with equal print time for the first two case studies with homogeneous chunks. In contrast, the modified GA outperforms the DDLA in the third case study, where the chunks are heterogeneous in volume and require different times to print.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleResource-Constrained Scheduling for Multi-Robot Cooperative Three-Dimensional Printing
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4050380
    journal fristpage072002-1
    journal lastpage072002-12
    page12
    treeJournal of Mechanical Design:;2021:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian