YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Additive Manufacturing of 316L Stainless Steel by a Printing-Debinding-Sintering Method: Effects of Microstructure on Fatigue Property

    Source: Journal of Manufacturing Science and Engineering:;2021:;volume( 143 ):;issue: 009::page 091007-1
    Author:
    Jiang, Dayue
    ,
    Ning, Fuda
    DOI: 10.1115/1.4050190
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Additive manufacturing (AM) technology has been broadly applied to the fabrication of metallic materials. However, current approaches consume either high energy or large investment that considerably elevates their entry threshold. An economic extrusion-based AM method followed by debinding and sintering could efficiently produce the metal parts with relatively low cost and high material utilization. However, an in-depth analysis of the fatigue performance of the component built by such a technology has been little documented so far. Herein, the 316L stainless steel was fabricated throughout the printing-debinding-sintering (PDS) pathway and its fatigue properties were comprehensively assessed. Tensile and flexural fatigue tests were conducted to reveal the fatigue strength and fractural behaviors under different loading conditions, while the fatigue crack growth (FCG) test was performed to quantify the crack propagation. The results indicated the number of 105 cycles can be reached for the tensile specimens under the fatigue loading of 120 MPa, whereas 1.37 × 105 cycles were endured by the flexural specimens under 150 MPa. The fractural morphology indicated an adverse impact of the pore-induced voids on the tensile fatigue crack propagation, but such a drawback could be alleviated in the flexural loading condition. The FCG test unveiled the crack growth rate with the number of cycles and determined the material-related coefficients in the fatigue crack growth model. The research findings provided valuable insights into the effects of the PDS process and microstructures on the resultant fatigue properties of the metal component.
    • Download: (1.434Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Additive Manufacturing of 316L Stainless Steel by a Printing-Debinding-Sintering Method: Effects of Microstructure on Fatigue Property

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276242
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorJiang, Dayue
    contributor authorNing, Fuda
    date accessioned2022-02-05T21:44:22Z
    date available2022-02-05T21:44:22Z
    date copyright4/1/2021 12:00:00 AM
    date issued2021
    identifier issn1087-1357
    identifier othermanu_143_9_091007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276242
    description abstractAdditive manufacturing (AM) technology has been broadly applied to the fabrication of metallic materials. However, current approaches consume either high energy or large investment that considerably elevates their entry threshold. An economic extrusion-based AM method followed by debinding and sintering could efficiently produce the metal parts with relatively low cost and high material utilization. However, an in-depth analysis of the fatigue performance of the component built by such a technology has been little documented so far. Herein, the 316L stainless steel was fabricated throughout the printing-debinding-sintering (PDS) pathway and its fatigue properties were comprehensively assessed. Tensile and flexural fatigue tests were conducted to reveal the fatigue strength and fractural behaviors under different loading conditions, while the fatigue crack growth (FCG) test was performed to quantify the crack propagation. The results indicated the number of 105 cycles can be reached for the tensile specimens under the fatigue loading of 120 MPa, whereas 1.37 × 105 cycles were endured by the flexural specimens under 150 MPa. The fractural morphology indicated an adverse impact of the pore-induced voids on the tensile fatigue crack propagation, but such a drawback could be alleviated in the flexural loading condition. The FCG test unveiled the crack growth rate with the number of cycles and determined the material-related coefficients in the fatigue crack growth model. The research findings provided valuable insights into the effects of the PDS process and microstructures on the resultant fatigue properties of the metal component.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdditive Manufacturing of 316L Stainless Steel by a Printing-Debinding-Sintering Method: Effects of Microstructure on Fatigue Property
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4050190
    journal fristpage091007-1
    journal lastpage091007-10
    page10
    treeJournal of Manufacturing Science and Engineering:;2021:;volume( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian