YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Electron Beam Irradiation on Elastomers Used in Tooling for Composites Manufacturing

    Source: Journal of Manufacturing Science and Engineering:;2021:;volume( 143 ):;issue: 006::page 064502-1
    Author:
    Rizzolo, Robert
    ,
    Walczyk, Daniel
    ,
    Montoney, Daniel
    DOI: 10.1115/1.4049493
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Background: This technical brief discusses material degradation issues and potential remedies related to advanced thermoset composites manufacturing using a new out-of-autoclave consolidation and curing process called Electron Beam processing with Specialized Elastomeric Tooling for Resin Infusion (EB-SETRI). To provide context, the design process for EB-SETRI tooling based on finite element structural analysis and Monte Carlo simulations of EB attenuation within tooling materials is briefly described. Of particular interest in this paper is the elastomeric mask, since it exhibits significant changes in mechanical properties based on prior work. Methods: Samples of five different silicone blends (four different durometers and two different catalysts) and one urethane (elastomeric mask materials of choice) were irradiated by an EB source with 3.0-MeV maximum power to simulate the conditions experienced by EB-SETRI tooling during processing. Changes in surface hardness and compression modulus were measured using ASTM D575 and D2240 as a function of dosage. Results: Urethane embrittles and becomes unusable even at low dosages, whereas silicone generally hardens to a maximum level at higher dosages, presumably due to increased crosslinking density, and stiffens (modulus increases) linearly. The embrittlement of silicone is shown to be a result of the EB irradiation and not due to a temperature increase from energy absorption. Conclusions: Changes in elastomer mechanical properties confound process performance as a result, and several concepts for dealing with these changes are suggested. Although the experimental focus is on EB-SETRI, results apply to any manufacturing process that combines the use of EB irradiation and elastomers.
    • Download: (765.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Electron Beam Irradiation on Elastomers Used in Tooling for Composites Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276203
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorRizzolo, Robert
    contributor authorWalczyk, Daniel
    contributor authorMontoney, Daniel
    date accessioned2022-02-05T21:43:06Z
    date available2022-02-05T21:43:06Z
    date copyright2/2/2021 12:00:00 AM
    date issued2021
    identifier issn1087-1357
    identifier othermanu_143_6_064502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276203
    description abstractBackground: This technical brief discusses material degradation issues and potential remedies related to advanced thermoset composites manufacturing using a new out-of-autoclave consolidation and curing process called Electron Beam processing with Specialized Elastomeric Tooling for Resin Infusion (EB-SETRI). To provide context, the design process for EB-SETRI tooling based on finite element structural analysis and Monte Carlo simulations of EB attenuation within tooling materials is briefly described. Of particular interest in this paper is the elastomeric mask, since it exhibits significant changes in mechanical properties based on prior work. Methods: Samples of five different silicone blends (four different durometers and two different catalysts) and one urethane (elastomeric mask materials of choice) were irradiated by an EB source with 3.0-MeV maximum power to simulate the conditions experienced by EB-SETRI tooling during processing. Changes in surface hardness and compression modulus were measured using ASTM D575 and D2240 as a function of dosage. Results: Urethane embrittles and becomes unusable even at low dosages, whereas silicone generally hardens to a maximum level at higher dosages, presumably due to increased crosslinking density, and stiffens (modulus increases) linearly. The embrittlement of silicone is shown to be a result of the EB irradiation and not due to a temperature increase from energy absorption. Conclusions: Changes in elastomer mechanical properties confound process performance as a result, and several concepts for dealing with these changes are suggested. Although the experimental focus is on EB-SETRI, results apply to any manufacturing process that combines the use of EB irradiation and elastomers.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Electron Beam Irradiation on Elastomers Used in Tooling for Composites Manufacturing
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4049493
    journal fristpage064502-1
    journal lastpage064502-6
    page6
    treeJournal of Manufacturing Science and Engineering:;2021:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian