YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Single-Step Shear-Based Deformation Processing of Electrical Conductor Wires

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 005::page 051010-1
    Author:
    Issahaq, Mohammed Naziru
    ,
    Chandrasekar, Srinivasan
    ,
    Trumble, Kevin P.
    DOI: 10.1115/1.4048984
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Commercial electrical conductor wires are currently produced from aluminum alloys by multi-step deformation processing involving rolling and drawing. These processes typically require 10 to 20 steps of deformation, since the plastic strain or reduction that can be imposed in a single step is limited by material workability and process mechanics. Here, we demonstrate a fundamentally different, single-step approach to produce flat wire aluminum products using machining-based deformation that also ensures adequate material workability in the formed product. Two process routes are proposed: (1) chip formation by free-machining (FM), with a post-machining, light drawing reduction (<20%) to achieve desired finish and (2) constrained chip formation by large strain extrusion machining (LSEM). Using commercially pure aluminum conductor alloys (Al 1100 and EC1350) as representative material systems, we demonstrate key features of the machining-based processing, including (a) single-step processing to achieve flat wire geometries, (b) surface finish (Ra = 0.2 to 1.0 μm) comparable to that of commercial wire products made by drawing/rolling, (c) deformation control independent of wire size, and (d) hardness increases of 50–150% over that of annealed wires, while retaining high electrical conductivity (>56% IACS). The wire microstructure, which can also be varied via the large-strain deformation parameters, is correlated with mechanical and electrical properties. Implications for commercial manufacture of flat wire products are discussed.
    • Download: (1.194Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Single-Step Shear-Based Deformation Processing of Electrical Conductor Wires

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276182
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorIssahaq, Mohammed Naziru
    contributor authorChandrasekar, Srinivasan
    contributor authorTrumble, Kevin P.
    date accessioned2022-02-05T21:42:32Z
    date available2022-02-05T21:42:32Z
    date copyright12/17/2020 12:00:00 AM
    date issued2020
    identifier issn1087-1357
    identifier othermanu_143_5_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276182
    description abstractCommercial electrical conductor wires are currently produced from aluminum alloys by multi-step deformation processing involving rolling and drawing. These processes typically require 10 to 20 steps of deformation, since the plastic strain or reduction that can be imposed in a single step is limited by material workability and process mechanics. Here, we demonstrate a fundamentally different, single-step approach to produce flat wire aluminum products using machining-based deformation that also ensures adequate material workability in the formed product. Two process routes are proposed: (1) chip formation by free-machining (FM), with a post-machining, light drawing reduction (<20%) to achieve desired finish and (2) constrained chip formation by large strain extrusion machining (LSEM). Using commercially pure aluminum conductor alloys (Al 1100 and EC1350) as representative material systems, we demonstrate key features of the machining-based processing, including (a) single-step processing to achieve flat wire geometries, (b) surface finish (Ra = 0.2 to 1.0 μm) comparable to that of commercial wire products made by drawing/rolling, (c) deformation control independent of wire size, and (d) hardness increases of 50–150% over that of annealed wires, while retaining high electrical conductivity (>56% IACS). The wire microstructure, which can also be varied via the large-strain deformation parameters, is correlated with mechanical and electrical properties. Implications for commercial manufacture of flat wire products are discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSingle-Step Shear-Based Deformation Processing of Electrical Conductor Wires
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4048984
    journal fristpage051010-1
    journal lastpage051010-9
    page9
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian