YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Micromachining on Borosilicate Glass Using CO2 Laser

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 005::page 051007-1
    Author:
    Posa, Vishnu Vardhan
    ,
    Sundaram, Murali
    DOI: 10.1115/1.4048639
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Laser beam machining (LBM) is a versatile process that can shape a wide range of engineering materials such as metals, ceramics, polymers, and composite materials. However, machining of glass materials by LBM is a challenge as most of the laser energy is not absorbed by the surface. In this study, an attempt has been made to increase the absorptivity of the glass material by using a coating on the surface of the material. Glass has been used in this study because of its extensive applications in the micro-opto-electro-mechanical systems. The optimal machining depends on both laser parameters and properties of the workpiece material. There are number of laser parameters that can be varied in the laser machining process. It is difficult to find optimal laser parameters due to the mutual interaction of laser parameters. A statistical study based on design of experiment (DoE) has been made to study the effect of coating and parameters like laser power, laser scanning speed, angle of inclination of the workpiece on depth of the slot, width of the slot, aspect ratio, and material removal rate (MRR) in the laser machining process using 2k factorial design and analysis of variance (ANOVA). On an average, four times increase in depth of the slot, two times increase in width of the slot and seven times increase in the MRR were observed in the glass samples with coating when compared to uncoated glass work samples.
    • Download: (692.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Micromachining on Borosilicate Glass Using CO2 Laser

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276178
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorPosa, Vishnu Vardhan
    contributor authorSundaram, Murali
    date accessioned2022-02-05T21:42:25Z
    date available2022-02-05T21:42:25Z
    date copyright11/11/2020 12:00:00 AM
    date issued2020
    identifier issn1087-1357
    identifier othermanu_143_5_051007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276178
    description abstractLaser beam machining (LBM) is a versatile process that can shape a wide range of engineering materials such as metals, ceramics, polymers, and composite materials. However, machining of glass materials by LBM is a challenge as most of the laser energy is not absorbed by the surface. In this study, an attempt has been made to increase the absorptivity of the glass material by using a coating on the surface of the material. Glass has been used in this study because of its extensive applications in the micro-opto-electro-mechanical systems. The optimal machining depends on both laser parameters and properties of the workpiece material. There are number of laser parameters that can be varied in the laser machining process. It is difficult to find optimal laser parameters due to the mutual interaction of laser parameters. A statistical study based on design of experiment (DoE) has been made to study the effect of coating and parameters like laser power, laser scanning speed, angle of inclination of the workpiece on depth of the slot, width of the slot, aspect ratio, and material removal rate (MRR) in the laser machining process using 2k factorial design and analysis of variance (ANOVA). On an average, four times increase in depth of the slot, two times increase in width of the slot and seven times increase in the MRR were observed in the glass samples with coating when compared to uncoated glass work samples.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study of Micromachining on Borosilicate Glass Using CO2 Laser
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4048639
    journal fristpage051007-1
    journal lastpage051007-7
    page7
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian