YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Environmental Impacts of Metal Powder Bed Additive Manufacturing

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 003::page 030801-1
    Author:
    Liao, Jiankan
    ,
    Cooper, Daniel R.
    DOI: 10.1115/1.4048435
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Additive manufacturing (AM) is widely recognized as a critical pillar of advanced manufacturing and is moving from the design shop to the factory floor. As AM processes become more popular, it is paramount that engineers and policymakers understand and then reduce their environmental impacts. This article structures the current work on the environmental impacts of metal powder bed processes: selective laser melting (SLM), direct metal laser sintering (DMLS), electron beam melting (EBM), and binder jetting (BJ). We review the potential benefits and pitfalls of AM in each phase of a part's lifecycle and in different application domains (e.g., remanufacturing and hybrid manufacturing). We highlight critical uncertainties and future research directions throughout. The environmental impacts of AM are sensitive to the specific production and use-phase context; however, several broad lessons can be extracted from the literature. Unlike in conventional manufacturing, powder bed production impacts are dominated by the generation of the direct energy (electricity) required to operate the AM machines. Combined with a more energy-intensive feedstock (metal powder), this means that powder bed production impacts are higher than in conventional manufacturing unless production volumes are very small (saving tool production impacts), and/or there are significant material savings through part light weighting or improved buy-to-fly ratios.
    • Download: (569.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Environmental Impacts of Metal Powder Bed Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276139
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLiao, Jiankan
    contributor authorCooper, Daniel R.
    date accessioned2022-02-05T21:41:19Z
    date available2022-02-05T21:41:19Z
    date copyright10/22/2020 12:00:00 AM
    date issued2020
    identifier issn1087-1357
    identifier othermanu_143_3_030801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276139
    description abstractAdditive manufacturing (AM) is widely recognized as a critical pillar of advanced manufacturing and is moving from the design shop to the factory floor. As AM processes become more popular, it is paramount that engineers and policymakers understand and then reduce their environmental impacts. This article structures the current work on the environmental impacts of metal powder bed processes: selective laser melting (SLM), direct metal laser sintering (DMLS), electron beam melting (EBM), and binder jetting (BJ). We review the potential benefits and pitfalls of AM in each phase of a part's lifecycle and in different application domains (e.g., remanufacturing and hybrid manufacturing). We highlight critical uncertainties and future research directions throughout. The environmental impacts of AM are sensitive to the specific production and use-phase context; however, several broad lessons can be extracted from the literature. Unlike in conventional manufacturing, powder bed production impacts are dominated by the generation of the direct energy (electricity) required to operate the AM machines. Combined with a more energy-intensive feedstock (metal powder), this means that powder bed production impacts are higher than in conventional manufacturing unless production volumes are very small (saving tool production impacts), and/or there are significant material savings through part light weighting or improved buy-to-fly ratios.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Environmental Impacts of Metal Powder Bed Additive Manufacturing
    typeJournal Paper
    journal volume143
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4048435
    journal fristpage030801-1
    journal lastpage030801-11
    page11
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian