Effect of Process Parameters on Wavy Interfacial Morphology During Magnetic Pulse WeldingSource: Journal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 001::page 011010-1DOI: 10.1115/1.4048516Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Magnetic pulse welding (MPW) is a solid-state welding process that bonds similar and dissimilar metals using a high velocity collision. In this paper, effects of impact velocity, target tube thickness, and mandrel inclusion on the interfacial morphology were investigated through the welding of tubular parts, Al6060T4 (flyer) to Cu-ETP (target), by electromagnetic compression. The hypothesis tested in this research is that a “well-supported target,” i.e., either a thick target or the support of a mandrel, allows for vortices to be created at the interface during MPW provided that the impact velocity is sufficient. The mandrel used in the experiments was polyurethane with a Shore hardness of 92A, which was pre-stressed via a washer and nut. The impact velocity was measured via photon Doppler velocimetry (PDV) and used for the setup of numerical simulations. A 2D axisymmetric numerical model was implemented in LS-DYNA to predict the interfacial morphology. Thermal analyses in the numerical model were used to predict the local melting locations and compared with experimental observations. Both experimental and numerical results showed that the interfacial wavelength increased with an increase in the impact velocity and target thickness. Similarly, a thin target with mandrel support also caused an increase in the wavelength. Vortices were only generated with appropriate impact velocities and well-supported targets, i.e., again either a thick target or the support of a mandrel.
|
Collections
Show full item record
contributor author | Zhang, Shunyi | |
contributor author | Lueg-Althoff, Joern | |
contributor author | Hahn, Marlon | |
contributor author | Tekkaya, A. Erman | |
contributor author | Kinsey, Brad | |
date accessioned | 2022-02-05T21:40:43Z | |
date available | 2022-02-05T21:40:43Z | |
date copyright | 12/3/2020 12:00:00 AM | |
date issued | 2020 | |
identifier issn | 1087-1357 | |
identifier other | manu_143_1_011010.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4276120 | |
description abstract | Magnetic pulse welding (MPW) is a solid-state welding process that bonds similar and dissimilar metals using a high velocity collision. In this paper, effects of impact velocity, target tube thickness, and mandrel inclusion on the interfacial morphology were investigated through the welding of tubular parts, Al6060T4 (flyer) to Cu-ETP (target), by electromagnetic compression. The hypothesis tested in this research is that a “well-supported target,” i.e., either a thick target or the support of a mandrel, allows for vortices to be created at the interface during MPW provided that the impact velocity is sufficient. The mandrel used in the experiments was polyurethane with a Shore hardness of 92A, which was pre-stressed via a washer and nut. The impact velocity was measured via photon Doppler velocimetry (PDV) and used for the setup of numerical simulations. A 2D axisymmetric numerical model was implemented in LS-DYNA to predict the interfacial morphology. Thermal analyses in the numerical model were used to predict the local melting locations and compared with experimental observations. Both experimental and numerical results showed that the interfacial wavelength increased with an increase in the impact velocity and target thickness. Similarly, a thin target with mandrel support also caused an increase in the wavelength. Vortices were only generated with appropriate impact velocities and well-supported targets, i.e., again either a thick target or the support of a mandrel. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effect of Process Parameters on Wavy Interfacial Morphology During Magnetic Pulse Welding | |
type | Journal Paper | |
journal volume | 143 | |
journal issue | 1 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.4048516 | |
journal fristpage | 011010-1 | |
journal lastpage | 011010-10 | |
page | 10 | |
tree | Journal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 001 | |
contenttype | Fulltext |