YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling and Design Exploration of a Tensegrity-Based Twisting Wing

    Source: Journal of Mechanisms and Robotics:;2021:;volume( 013 ):;issue: 003::page 031117-1
    Author:
    Pham, Nguyen K.
    ,
    Peraza Hernandez, Edwin A.
    DOI: 10.1115/1.4050149
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a modeling and design exploration study of a novel twisting wing whose motion is enabled by a tensegrity mechanism. The aerodynamic characteristics of the twisting wing, which does not require control surfaces to modulate its shape, are compared with those of a conventional wing having a control surface. It is shown via computational fluid dynamics analyses that the twisting wing displays higher lift-to-drag ratio than the conventional wing and hence the twisting wing is more aerodynamically efficient. Subsequently, the torsional tensegrity mechanism, composed of multiple tensegrity cylindrical cells forming a column along the wingspan, is described. A finite element model of the wing incorporating this mechanism is developed. Using the model, a design of experimental study of the influence of the topological parameters of the torsional tensegrity mechanism on the twist angle, mass, and stress in different components of the wing is performed. A wingspan of 142.24 cm and a chord length of 25.31 cm are assumed, corresponding to those of the Carl Goldberg Falcon 56 Mk II R/C unmanned aerial vehicle. For a wing of such dimensions, the maximum achievable twist angle from root to tip per unit mass without any component exceeding their allowable stress is 5.93 deg/kg, which is sufficiently large to allow for effective modulation of the aerodynamic characteristics of the wing. The torsional tensegrity mechanism for this design consists of eight cylindrical cells and four sets of actuator wires along the circumference of each cell.
    • Download: (2.251Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling and Design Exploration of a Tensegrity-Based Twisting Wing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276096
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorPham, Nguyen K.
    contributor authorPeraza Hernandez, Edwin A.
    date accessioned2022-02-05T21:40:03Z
    date available2022-02-05T21:40:03Z
    date copyright3/26/2021 12:00:00 AM
    date issued2021
    identifier issn1942-4302
    identifier otherjmr_13_3_031117.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276096
    description abstractThis paper presents a modeling and design exploration study of a novel twisting wing whose motion is enabled by a tensegrity mechanism. The aerodynamic characteristics of the twisting wing, which does not require control surfaces to modulate its shape, are compared with those of a conventional wing having a control surface. It is shown via computational fluid dynamics analyses that the twisting wing displays higher lift-to-drag ratio than the conventional wing and hence the twisting wing is more aerodynamically efficient. Subsequently, the torsional tensegrity mechanism, composed of multiple tensegrity cylindrical cells forming a column along the wingspan, is described. A finite element model of the wing incorporating this mechanism is developed. Using the model, a design of experimental study of the influence of the topological parameters of the torsional tensegrity mechanism on the twist angle, mass, and stress in different components of the wing is performed. A wingspan of 142.24 cm and a chord length of 25.31 cm are assumed, corresponding to those of the Carl Goldberg Falcon 56 Mk II R/C unmanned aerial vehicle. For a wing of such dimensions, the maximum achievable twist angle from root to tip per unit mass without any component exceeding their allowable stress is 5.93 deg/kg, which is sufficiently large to allow for effective modulation of the aerodynamic characteristics of the wing. The torsional tensegrity mechanism for this design consists of eight cylindrical cells and four sets of actuator wires along the circumference of each cell.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling and Design Exploration of a Tensegrity-Based Twisting Wing
    typeJournal Paper
    journal volume13
    journal issue3
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4050149
    journal fristpage031117-1
    journal lastpage031117-12
    page12
    treeJournal of Mechanisms and Robotics:;2021:;volume( 013 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian