YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Three-Dimensional Printing With Nanotubes on Impact and Fatigue Resistance

    Source: Journal of Engineering Materials and Technology:;2020:;volume( 142 ):;issue: 002::page 024501-1
    Author:
    Schmitz, Anne
    DOI: 10.1115/1.4044963
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The types of biomedical devices that can be three-dimensional printed (3DP) are limited by the mechanical properties of the resulting materials. As a result, much research has been focused on adding carbon nanotubes (CNT) to these photocurable polymers to make them stronger. The objective of this study was to expand the use of 3DP to prosthetics by testing the hypothesis that adding CNTs to a stereolithographic (SLA) photocurable resin will result in a cured polymer with increased impact and fatigue resistance. For impact testing, twenty-six total specimens, 13 with nanotubes and 13 without nanotubes, were printed on a Form2 SLA printer. Once all the specimens were printed, washed, and cured, the impact resistance was quantified using a pendulum impact tester using a notched Izod configuration. Similarly, twelve R. R. Moore fatigue specimens were printed, washed, and cured. The specimens with SWCNTs (0.312 ± 0.036 ft lb/in.) had a significantly lower impact resistance compared to the non-SWCNT specimens (0.364 ± 0.055 ft lb/in.), U = 34.0, p = 0.004. Adding SWCNTs also reduced the short cycle fatigue life (i.e., 103) from 3.1 × 5 to 8.8 × 3 psi and increased the endurance limit from 0.4 to 3.0 × 3 psi. If used for creating a foot prosthetic, the non-SWCNT polymer would last 2919 cycles while the SWCNT mixture would last <1 cycle. Therefore, SLA polymers do not yet have the impact and fatigue resistance capabilities to be used for prosthetic feet.
    • Download: (406.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Three-Dimensional Printing With Nanotubes on Impact and Fatigue Resistance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276046
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorSchmitz, Anne
    date accessioned2022-02-04T23:04:28Z
    date available2022-02-04T23:04:28Z
    date copyright4/1/2020 12:00:00 AM
    date issued2020
    identifier issn0094-4289
    identifier othermats_142_2_024501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276046
    description abstractThe types of biomedical devices that can be three-dimensional printed (3DP) are limited by the mechanical properties of the resulting materials. As a result, much research has been focused on adding carbon nanotubes (CNT) to these photocurable polymers to make them stronger. The objective of this study was to expand the use of 3DP to prosthetics by testing the hypothesis that adding CNTs to a stereolithographic (SLA) photocurable resin will result in a cured polymer with increased impact and fatigue resistance. For impact testing, twenty-six total specimens, 13 with nanotubes and 13 without nanotubes, were printed on a Form2 SLA printer. Once all the specimens were printed, washed, and cured, the impact resistance was quantified using a pendulum impact tester using a notched Izod configuration. Similarly, twelve R. R. Moore fatigue specimens were printed, washed, and cured. The specimens with SWCNTs (0.312 ± 0.036 ft lb/in.) had a significantly lower impact resistance compared to the non-SWCNT specimens (0.364 ± 0.055 ft lb/in.), U = 34.0, p = 0.004. Adding SWCNTs also reduced the short cycle fatigue life (i.e., 103) from 3.1 × 5 to 8.8 × 3 psi and increased the endurance limit from 0.4 to 3.0 × 3 psi. If used for creating a foot prosthetic, the non-SWCNT polymer would last 2919 cycles while the SWCNT mixture would last <1 cycle. Therefore, SLA polymers do not yet have the impact and fatigue resistance capabilities to be used for prosthetic feet.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Three-Dimensional Printing With Nanotubes on Impact and Fatigue Resistance
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4044963
    journal fristpage024501-1
    journal lastpage024501-5
    page5
    treeJournal of Engineering Materials and Technology:;2020:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian