YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Autoignition of Nuclear Reactor Power Plant Explosions

    Source: Journal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 001::page 014001-1
    Author:
    Leishear, Robert A.
    DOI: 10.1115/1.4044807
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Explosive research proves that there is a common cause for most explosions in nuclear reactor power plants during normal operations and accident conditions. The autoignition of flammable hydrogen is a common cause for nuclear power plant explosions, where complex corrosion processes, nuclear reactions, and thermal-fluid transients autoignite explosions. Research evaluated increasingly complicated accidents. First, piping explosions occurred at Hamaoka and Brunsbuttel. Fluid transients compressed oxygen and flammable hydrogen to heat these gases to autoignition, where resultant explosions shredded steel pipes. This identical mechanism was responsible for pipe and pump damages to U.S. reactor systems since the 1950s, where water hammer alone has been assumed to cause damages. Small explosions inside the piping actually cause damages during nuclear reactor startups and flow rate changes. Second, explosions are caused by thermal-fluid transients during nuclear reactor restarts, following accidental nuclear reactor meltdowns. Disastrous explosions destroyed nuclear reactor buildings (RBs) at Fukushima Daiichi. Previously considered to be a fire, a 319 kilogram hydrogen explosion occurred at Three Mile Island (TMI). The explosion cause following each of these loss-of-coolant accidents was identical, i.e., after meltdowns, pump operations heated gases, which in turn acted as the heat source to autoignite sequential hydrogen explosions in reactor systems to ignite RBs. Third, the Chernobyl explosion followed a reactor meltdown that was complicated by a high energy nuclear criticality. The hydrogen ignition and explosion causes are more complicated as well, where two sequential hydrogen explosions were ignited by high-temperature reactor fuel.
    • Download: (9.551Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Autoignition of Nuclear Reactor Power Plant Explosions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4276009
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorLeishear, Robert A.
    date accessioned2022-02-04T23:03:29Z
    date available2022-02-04T23:03:29Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn2332-8983
    identifier otherners_006_01_014001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276009
    description abstractExplosive research proves that there is a common cause for most explosions in nuclear reactor power plants during normal operations and accident conditions. The autoignition of flammable hydrogen is a common cause for nuclear power plant explosions, where complex corrosion processes, nuclear reactions, and thermal-fluid transients autoignite explosions. Research evaluated increasingly complicated accidents. First, piping explosions occurred at Hamaoka and Brunsbuttel. Fluid transients compressed oxygen and flammable hydrogen to heat these gases to autoignition, where resultant explosions shredded steel pipes. This identical mechanism was responsible for pipe and pump damages to U.S. reactor systems since the 1950s, where water hammer alone has been assumed to cause damages. Small explosions inside the piping actually cause damages during nuclear reactor startups and flow rate changes. Second, explosions are caused by thermal-fluid transients during nuclear reactor restarts, following accidental nuclear reactor meltdowns. Disastrous explosions destroyed nuclear reactor buildings (RBs) at Fukushima Daiichi. Previously considered to be a fire, a 319 kilogram hydrogen explosion occurred at Three Mile Island (TMI). The explosion cause following each of these loss-of-coolant accidents was identical, i.e., after meltdowns, pump operations heated gases, which in turn acted as the heat source to autoignite sequential hydrogen explosions in reactor systems to ignite RBs. Third, the Chernobyl explosion followed a reactor meltdown that was complicated by a high energy nuclear criticality. The hydrogen ignition and explosion causes are more complicated as well, where two sequential hydrogen explosions were ignited by high-temperature reactor fuel.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Autoignition of Nuclear Reactor Power Plant Explosions
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4044807
    journal fristpage014001-1
    journal lastpage014001-22
    page22
    treeJournal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian