YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Feasibility Assessment of a Grid-Connected Carbon-Neutral Community in Midland, Texas

    Source: ASME Journal of Engineering for Sustainable Buildings and Cities:;2020:;volume( 001 ):;issue: 004::page 041005-1
    Author:
    Shah, Archan
    ,
    Engler, Nicholas
    ,
    Krarti, Moncef
    DOI: 10.1115/1.4049002
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Midland, Texas is one of the fastest-growing urban population centers in the country and has one of the lowest costs of electricity. This study aims to assess the potential of a grid-connected carbon-neutral community in an oil-rich city using energy efficiency measures and hybrid distributed generation (DG) systems. The community consists mostly of residential buildings including detached homes and apartment buildings. Moreover, a cost-optimization analysis of various DG technologies is carried out to meet both electrical and thermal loads of the community in Midland. The energy efficiency measures are selected for two main objectives: (i) reduce the total energy needs and (ii) electrify most of the buildings within the community. Improvement of heating, ventilating, and air conditioning systems and their controls are the main energy efficiency measures considered for all the buildings part of the community. DG systems are constrained by the renewable energy resources identified to be prevalent within the site of the community. It is found that photovoltaic (PV) systems are the most cost-effective, while wind and combined heat and power (CHP) would not be competitive compared to the current grid energy prices. Specifically, the optimization results indicate that PV, when implemented on a large scale, can provide adequate power to meet the energy needs of the community while also meeting carbon neutrality. A PV system size of 3400 kW is found to be required for the grid-connected community to be carbon neutral. While under this scenario a 100% reduction in carbon emissions is technically feasible, the cost of energy is estimated to be $0.194/kWh, almost double the current grid electricity price. However, if the capital cost of PV is decreased by 70% from its current level, the cost of energy due to the DG addition can be reduced significantly. In particular, a 1050-kW PV system was found to reduce the cost of energy below the grid electricity price of $0.10/kWh and achieves 31% reduction in carbon emissions for the community. Moreover, the 70% reduction in PV capital costs allows the carbon-neutral design for the community to be a cost-competitive solution with the grid.
    • Download: (875.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Feasibility Assessment of a Grid-Connected Carbon-Neutral Community in Midland, Texas

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275994
    Collections
    • ASME Journal of Engineering for Sustainable Buildings and Cities

    Show full item record

    contributor authorShah, Archan
    contributor authorEngler, Nicholas
    contributor authorKrarti, Moncef
    date accessioned2022-02-04T23:03:04Z
    date available2022-02-04T23:03:04Z
    date copyright11/1/2020 12:00:00 AM
    date issued2020
    identifier issn2642-6641
    identifier otherjesbc_1_4_041005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275994
    description abstractMidland, Texas is one of the fastest-growing urban population centers in the country and has one of the lowest costs of electricity. This study aims to assess the potential of a grid-connected carbon-neutral community in an oil-rich city using energy efficiency measures and hybrid distributed generation (DG) systems. The community consists mostly of residential buildings including detached homes and apartment buildings. Moreover, a cost-optimization analysis of various DG technologies is carried out to meet both electrical and thermal loads of the community in Midland. The energy efficiency measures are selected for two main objectives: (i) reduce the total energy needs and (ii) electrify most of the buildings within the community. Improvement of heating, ventilating, and air conditioning systems and their controls are the main energy efficiency measures considered for all the buildings part of the community. DG systems are constrained by the renewable energy resources identified to be prevalent within the site of the community. It is found that photovoltaic (PV) systems are the most cost-effective, while wind and combined heat and power (CHP) would not be competitive compared to the current grid energy prices. Specifically, the optimization results indicate that PV, when implemented on a large scale, can provide adequate power to meet the energy needs of the community while also meeting carbon neutrality. A PV system size of 3400 kW is found to be required for the grid-connected community to be carbon neutral. While under this scenario a 100% reduction in carbon emissions is technically feasible, the cost of energy is estimated to be $0.194/kWh, almost double the current grid electricity price. However, if the capital cost of PV is decreased by 70% from its current level, the cost of energy due to the DG addition can be reduced significantly. In particular, a 1050-kW PV system was found to reduce the cost of energy below the grid electricity price of $0.10/kWh and achieves 31% reduction in carbon emissions for the community. Moreover, the 70% reduction in PV capital costs allows the carbon-neutral design for the community to be a cost-competitive solution with the grid.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFeasibility Assessment of a Grid-Connected Carbon-Neutral Community in Midland, Texas
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleASME Journal of Engineering for Sustainable Buildings and Cities
    identifier doi10.1115/1.4049002
    journal fristpage041005-1
    journal lastpage041005-8
    page8
    treeASME Journal of Engineering for Sustainable Buildings and Cities:;2020:;volume( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian