YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Engineering for Sustainable Buildings and Cities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Benefit Cost Analysis of Electrification of Urban Districts: Case Study of Philadelphia, Pennsylvania

    Source: ASME Journal of Engineering for Sustainable Buildings and Cities:;2020:;volume( 001 ):;issue: 004::page 041004-1
    Author:
    Rajabi, Roya
    ,
    Thompson, Jordan
    ,
    Krarti, Moncef
    DOI: 10.1115/1.4049001
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, the results of a feasibility analysis are summarized to assess the energy, economic, and environmental benefits of electrification and renewable energy integration for an urban district of Old City, Philadelphia, Pennsylvania. First, the energy demand for the district is reduced through the implementation of cost-effective energy efficiency measures (EEMs) appropriate for Philadelphia’s climate. Then, a combination of distributed generation (DG) systems including wind, photovoltaics, and hydropower is evaluated to determine optimized hybrid systems that meet the energy demand of non-electrified and electrified districts. The analysis indicates that the implementation of common and proven EEMs to all the district buildings can reduce its annual energy consumption and CO2 emissions by 13% and 13.8%, respectively. These EEMs are estimated to be cost-effective based on the current electricity price of $0.082/kWh offered by Philadelphia’s utility, Philadelphia Electric Company (PECO). Through cost optimization analysis, a hybrid DG system combining wind and hydropower connected to the grid is found to lower the cost of energy for the non-electrified district to $0.007/kWh, lower than the current PECO rate, with the added benefit to lower carbon emissions by 10%. Moreover, the analysis considered the case of an electrified district which reduces life cycle costs by 3.5%. By implementing electrification and EEMs, the electricity usage decreases by 14% and peak demand by 19.5% as well as CO2 emissions by 18%. Through cost optimization to design a hybrid DG system that can meet energy demands of the electrified district, wind and hydropower connected to the grid is found to achieve a cost of energy of $0.008/kWh and carbon emissions reduction of 34.9%.
    • Download: (1.043Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Benefit Cost Analysis of Electrification of Urban Districts: Case Study of Philadelphia, Pennsylvania

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275993
    Collections
    • ASME Journal of Engineering for Sustainable Buildings and Cities

    Show full item record

    contributor authorRajabi, Roya
    contributor authorThompson, Jordan
    contributor authorKrarti, Moncef
    date accessioned2022-02-04T23:03:03Z
    date available2022-02-04T23:03:03Z
    date copyright11/1/2020 12:00:00 AM
    date issued2020
    identifier issn2642-6641
    identifier otherjesbc_1_4_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275993
    description abstractIn this paper, the results of a feasibility analysis are summarized to assess the energy, economic, and environmental benefits of electrification and renewable energy integration for an urban district of Old City, Philadelphia, Pennsylvania. First, the energy demand for the district is reduced through the implementation of cost-effective energy efficiency measures (EEMs) appropriate for Philadelphia’s climate. Then, a combination of distributed generation (DG) systems including wind, photovoltaics, and hydropower is evaluated to determine optimized hybrid systems that meet the energy demand of non-electrified and electrified districts. The analysis indicates that the implementation of common and proven EEMs to all the district buildings can reduce its annual energy consumption and CO2 emissions by 13% and 13.8%, respectively. These EEMs are estimated to be cost-effective based on the current electricity price of $0.082/kWh offered by Philadelphia’s utility, Philadelphia Electric Company (PECO). Through cost optimization analysis, a hybrid DG system combining wind and hydropower connected to the grid is found to lower the cost of energy for the non-electrified district to $0.007/kWh, lower than the current PECO rate, with the added benefit to lower carbon emissions by 10%. Moreover, the analysis considered the case of an electrified district which reduces life cycle costs by 3.5%. By implementing electrification and EEMs, the electricity usage decreases by 14% and peak demand by 19.5% as well as CO2 emissions by 18%. Through cost optimization to design a hybrid DG system that can meet energy demands of the electrified district, wind and hydropower connected to the grid is found to achieve a cost of energy of $0.008/kWh and carbon emissions reduction of 34.9%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBenefit Cost Analysis of Electrification of Urban Districts: Case Study of Philadelphia, Pennsylvania
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleASME Journal of Engineering for Sustainable Buildings and Cities
    identifier doi10.1115/1.4049001
    journal fristpage041004-1
    journal lastpage041004-12
    page12
    treeASME Journal of Engineering for Sustainable Buildings and Cities:;2020:;volume( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian