YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Human Reliability Analysis-Based Method for Manual Fire Suppression Analysis in an Integrated Probabilistic Risk Assessment

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 001::page 011010-1
    Author:
    Sakurahara, Tatsuya
    ,
    Mohaghegh, Zahra
    ,
    Kee, Ernie
    DOI: 10.1115/1.4044792
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fire is one of the most critical initiating events that can lead to core damage in nuclear power plants (NPPs). To evaluate the potential vulnerability of plants to fire hazards, fire probabilistic risk assessment (PRA) is commonly conducted. Manual fire protection features, performed by the first responders (e.g., fire brigade), play a key role in preventing and mitigating fire-induced damage to the plant systems. In the current fire PRA methodology of NPPs, there are two main gaps in the modeling of manual fire protection features: (i) the quantification of the first responder performance is solely based on empirical data (industry-wide historical fire events), and so the plant-specific design and conditions cannot be explicitly considered; and (ii) interactions of first responders with fire propagation are not fully captured. To address these challenges, the authors develop a model-based approach, grounded on human reliability analysis (HRA) and coupled with the fire dynamics simulator (FDS), to model the first responder performance more realistically and consider the interface between the first responder performance and fire propagation more explicitly. In this paper, the HRA-based approach is implemented in an integrated PRA (I-PRA) methodological framework for fire PRA and applied to a switchgear room fire scenario of an NPP. The proposed model-based approach (a) adds more realism to fire PRA and so to risk assessment in NPPs and (b) provides opportunities for sensitivity and importance measure analyses with respect to design conditions; therefore, contributes to risk management in NPPs.
    • Download: (1.711Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Human Reliability Analysis-Based Method for Manual Fire Suppression Analysis in an Integrated Probabilistic Risk Assessment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275975
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorSakurahara, Tatsuya
    contributor authorMohaghegh, Zahra
    contributor authorKee, Ernie
    date accessioned2022-02-04T23:02:36Z
    date available2022-02-04T23:02:36Z
    date copyright3/1/2020 12:00:00 AM
    date issued2020
    identifier issn2332-9017
    identifier otherrisk_006_01_011010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275975
    description abstractFire is one of the most critical initiating events that can lead to core damage in nuclear power plants (NPPs). To evaluate the potential vulnerability of plants to fire hazards, fire probabilistic risk assessment (PRA) is commonly conducted. Manual fire protection features, performed by the first responders (e.g., fire brigade), play a key role in preventing and mitigating fire-induced damage to the plant systems. In the current fire PRA methodology of NPPs, there are two main gaps in the modeling of manual fire protection features: (i) the quantification of the first responder performance is solely based on empirical data (industry-wide historical fire events), and so the plant-specific design and conditions cannot be explicitly considered; and (ii) interactions of first responders with fire propagation are not fully captured. To address these challenges, the authors develop a model-based approach, grounded on human reliability analysis (HRA) and coupled with the fire dynamics simulator (FDS), to model the first responder performance more realistically and consider the interface between the first responder performance and fire propagation more explicitly. In this paper, the HRA-based approach is implemented in an integrated PRA (I-PRA) methodological framework for fire PRA and applied to a switchgear room fire scenario of an NPP. The proposed model-based approach (a) adds more realism to fire PRA and so to risk assessment in NPPs and (b) provides opportunities for sensitivity and importance measure analyses with respect to design conditions; therefore, contributes to risk management in NPPs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHuman Reliability Analysis-Based Method for Manual Fire Suppression Analysis in an Integrated Probabilistic Risk Assessment
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4044792
    journal fristpage011010-1
    journal lastpage011010-15
    page15
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian