YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Early Time Modifications to the Buoyancy-Drag Model for Richtmyer–Meshkov Mixing

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 012::page 0121107-1
    Author:
    Youngs, David L.
    ,
    Thornber, Ben
    DOI: 10.1115/1.4048346
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Buoyancy-Drag model is a simple model, based on ordinary differential equations, for estimating the growth in the width of a turbulent mixing zone at an interface between fluids of different densities due to Richtmyer–Meshkov and Rayleigh–Taylor instabilities. The model is calibrated to give the required self-similar behavior for mixing in simple situations. However, the early stages of the mixing process are very dependent on the initial conditions and modifications to the Buoyancy-Drag model are then needed to obtain correct results. In a recent paper, Thornber et al. (2017, “Late-Time Growth Rate, Mixing, and Anisotropy in the Multimode Narrowband Richtmyer–Meshkov Instability: The θ-Group Collaboration,” Phys. Fluids, 29, p. 105107), a range of three-dimensional simulation techniques was used to calculate the evolution of the mixing zone integral width due to single-shock Richtmyer–Meshkov mixing from narrowband initial random perturbations. Further analysis of the results of these simulations gives greater insight into the transition from the initial linear behavior to late-time self-similar mixing and provides a way of modifying the Buoyancy-Drag model to treat the initial conditions accurately. Higher-resolution simulations are used to calculate the early time behavior more accurately and compare with a multimode model based on the impulsive linear theory. The analysis of the iLES data also gives a new method for estimating the growth exponent, θ (mixing zone width ∼ tθ), which is suitable for simulations which do not fully reach the self-similar state. The estimates of θ are consistent with the theoretical model of Elbaz and Shvarts (2018, “Modal Model Mean Field Self-Similar Solutions to the Asymptotic Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Its Dependence on the Initial Conditions,” Phys. Plasmas, 25, p. 062126).
    • Download: (1.021Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Early Time Modifications to the Buoyancy-Drag Model for Richtmyer–Meshkov Mixing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275950
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorYoungs, David L.
    contributor authorThornber, Ben
    date accessioned2022-02-04T23:01:57Z
    date available2022-02-04T23:01:57Z
    date copyright12/1/2020 12:00:00 AM
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_12_121107.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275950
    description abstractThe Buoyancy-Drag model is a simple model, based on ordinary differential equations, for estimating the growth in the width of a turbulent mixing zone at an interface between fluids of different densities due to Richtmyer–Meshkov and Rayleigh–Taylor instabilities. The model is calibrated to give the required self-similar behavior for mixing in simple situations. However, the early stages of the mixing process are very dependent on the initial conditions and modifications to the Buoyancy-Drag model are then needed to obtain correct results. In a recent paper, Thornber et al. (2017, “Late-Time Growth Rate, Mixing, and Anisotropy in the Multimode Narrowband Richtmyer–Meshkov Instability: The θ-Group Collaboration,” Phys. Fluids, 29, p. 105107), a range of three-dimensional simulation techniques was used to calculate the evolution of the mixing zone integral width due to single-shock Richtmyer–Meshkov mixing from narrowband initial random perturbations. Further analysis of the results of these simulations gives greater insight into the transition from the initial linear behavior to late-time self-similar mixing and provides a way of modifying the Buoyancy-Drag model to treat the initial conditions accurately. Higher-resolution simulations are used to calculate the early time behavior more accurately and compare with a multimode model based on the impulsive linear theory. The analysis of the iLES data also gives a new method for estimating the growth exponent, θ (mixing zone width ∼ tθ), which is suitable for simulations which do not fully reach the self-similar state. The estimates of θ are consistent with the theoretical model of Elbaz and Shvarts (2018, “Modal Model Mean Field Self-Similar Solutions to the Asymptotic Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Its Dependence on the Initial Conditions,” Phys. Plasmas, 25, p. 062126).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEarly Time Modifications to the Buoyancy-Drag Model for Richtmyer–Meshkov Mixing
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4048346
    journal fristpage0121107-1
    journal lastpage0121107-7
    page7
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian