YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dependence of Enstrophy Transport and Mixed Mass on Dimensionality and Initial Conditions in the Richtmyer–Meshkov Instability Induced Flows1

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 012::page 0121104-1
    Author:
    Zhou, Ye
    ,
    Groom, Michael
    ,
    Thornber, Ben
    DOI: 10.1115/1.4048343
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a comparative study of the enstrophy budget and mixed mass between two- and three-dimensional flows induced by Richtmyer–Meshkov instability (RMI). Specifically, the individual contributions to the enstrophy budget due to the production from baroclinicity and from vortex stretching (which vanishes in two-dimensional (2D) flow) are delineated. This is enabled by a set of two- and three-dimensional computations at Atwood 0.5 having both narrow- and broad-band perturbations. A further three-dimensional (3D) computation is conducted at Atwood 0.9 using an identical narrowband perturbation to the Atwood 0.5 case to examine the sensitivity to density ratio. The mixed mass is also considered with the goal to obtain insight on how faithfully a simplified calculation performed in two dimensions can capture the mixed mass for an inertial confinement fusion (ICF) or other practical application. It is shown that the late time power law decay of variable density enstrophy is substantially different in two and three dimensions for the narrowband initial perturbation. The baroclinic production term is negligible in three dimensions (aside from the initial shock interaction), as vortex stretching is larger by two orders of magnitude. The lack of vortex stretching considerably reduces the decay rate in both narrowband and broadband perturbations in two dimensions. In terms of mixed mass, the lack of vortex stretching reduces the mixed mass in two dimensions compared to three in all cases. In the broadband cases, the spectral bandwidth in the 2D case is wider; hence, there is a longer time period of sustained linear growth which reduces the normalized mixed mass further.
    • Download: (6.762Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dependence of Enstrophy Transport and Mixed Mass on Dimensionality and Initial Conditions in the Richtmyer–Meshkov Instability Induced Flows1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275947
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorZhou, Ye
    contributor authorGroom, Michael
    contributor authorThornber, Ben
    date accessioned2022-02-04T23:01:52Z
    date available2022-02-04T23:01:52Z
    date copyright12/1/2020 12:00:00 AM
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_12_121104.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275947
    description abstractThis paper presents a comparative study of the enstrophy budget and mixed mass between two- and three-dimensional flows induced by Richtmyer–Meshkov instability (RMI). Specifically, the individual contributions to the enstrophy budget due to the production from baroclinicity and from vortex stretching (which vanishes in two-dimensional (2D) flow) are delineated. This is enabled by a set of two- and three-dimensional computations at Atwood 0.5 having both narrow- and broad-band perturbations. A further three-dimensional (3D) computation is conducted at Atwood 0.9 using an identical narrowband perturbation to the Atwood 0.5 case to examine the sensitivity to density ratio. The mixed mass is also considered with the goal to obtain insight on how faithfully a simplified calculation performed in two dimensions can capture the mixed mass for an inertial confinement fusion (ICF) or other practical application. It is shown that the late time power law decay of variable density enstrophy is substantially different in two and three dimensions for the narrowband initial perturbation. The baroclinic production term is negligible in three dimensions (aside from the initial shock interaction), as vortex stretching is larger by two orders of magnitude. The lack of vortex stretching considerably reduces the decay rate in both narrowband and broadband perturbations in two dimensions. In terms of mixed mass, the lack of vortex stretching reduces the mixed mass in two dimensions compared to three in all cases. In the broadband cases, the spectral bandwidth in the 2D case is wider; hence, there is a longer time period of sustained linear growth which reduces the normalized mixed mass further.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDependence of Enstrophy Transport and Mixed Mass on Dimensionality and Initial Conditions in the Richtmyer–Meshkov Instability Induced Flows1
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4048343
    journal fristpage0121104-1
    journal lastpage0121104-14
    page14
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian