YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Passage-Spectral Method For Unsteady Flows Under Stall Conditions

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 012::page 0121007-1
    Author:
    Romera, David
    ,
    Corral, Roque
    DOI: 10.1115/1.4047934
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an efficient method of approximating unsteady flows using a block-wise discrete spatial Fourier series for the modeling of three-dimensional non-axisymmetric flows without making any hypothesis about its temporal periodicity. The method aims at capturing the long-wavelength flow patterns that are present in many unsteady problems of industrial interest, such as compressor stability, with a drastic reduction in computational resources. The method is intended to be used to compute flows exhibiting large-scale instabilities and where the fundamental frequency of the problem is not known beforehand. The approach discretizes the domain using a finite number of blocks or passages, where the flow variables at the supposedly periodic boundaries are continuously updated using the spatial Fourier coefficients of a uniformly spaced set of reduced-passage domains. The NASA rotor 67 under the effect of distorted inflow conditions has been used as verification case to demonstrate the effectiveness and viability of the method. The comparison between the passage-spectral method and the full-annulus solution shows that sound solutions can be obtained with a low number of harmonics. The new method has also been applied to investigate the rotating stall inception of the NASA rotor 67 for distorted inlet flows near stall operating conditions. The method is shown to accurately reproduce the full-annulus solution with a few spatial harmonics, capturing the characteristic features of the complex flow induced by the tip leakage vortex breakdown. The computational cost in this application has been reduced by a factor of between three and seven. This number heavily depends on the ratio between the number of retained harmonics to the number of blades.
    • Download: (1.819Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Passage-Spectral Method For Unsteady Flows Under Stall Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275931
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorRomera, David
    contributor authorCorral, Roque
    date accessioned2022-02-04T23:01:25Z
    date available2022-02-04T23:01:25Z
    date copyright12/1/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_12_121007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275931
    description abstractThis paper presents an efficient method of approximating unsteady flows using a block-wise discrete spatial Fourier series for the modeling of three-dimensional non-axisymmetric flows without making any hypothesis about its temporal periodicity. The method aims at capturing the long-wavelength flow patterns that are present in many unsteady problems of industrial interest, such as compressor stability, with a drastic reduction in computational resources. The method is intended to be used to compute flows exhibiting large-scale instabilities and where the fundamental frequency of the problem is not known beforehand. The approach discretizes the domain using a finite number of blocks or passages, where the flow variables at the supposedly periodic boundaries are continuously updated using the spatial Fourier coefficients of a uniformly spaced set of reduced-passage domains. The NASA rotor 67 under the effect of distorted inflow conditions has been used as verification case to demonstrate the effectiveness and viability of the method. The comparison between the passage-spectral method and the full-annulus solution shows that sound solutions can be obtained with a low number of harmonics. The new method has also been applied to investigate the rotating stall inception of the NASA rotor 67 for distorted inlet flows near stall operating conditions. The method is shown to accurately reproduce the full-annulus solution with a few spatial harmonics, capturing the characteristic features of the complex flow induced by the tip leakage vortex breakdown. The computational cost in this application has been reduced by a factor of between three and seven. This number heavily depends on the ratio between the number of retained harmonics to the number of blades.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEfficient Passage-Spectral Method For Unsteady Flows Under Stall Conditions
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4047934
    journal fristpage0121007-1
    journal lastpage0121007-11
    page11
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian