YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study of Superhomogenization Applied to PHWR Lattices

    Source: Journal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 001::page 011109-1
    Author:
    Ferguson, Thomas A.
    ,
    Nichita, Eleodor M.
    DOI: 10.1115/1.4044748
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To reduce computational expenses, full-core production-type neutronics calculations are customarily performed using a simplified core-model whereby large regions of the core, called nodes, are assumed to be homogeneous. The process of generating the few-group homogenized-node macroscopic cross sections is called lattice homogenization. The simplest homogenization method is standard homogenization (SH) and full-core models based on it do not usually reproduce heterogeneous-core calculations too closely. To improve agreement between node-homogenized core results and heterogeneous-core results, advanced homogenization techniques are used. Such techniques tend to use additional parameters besides homogenized macroscopic cross sections. Superhomogenization (SPH) is an advanced lattice homogenization method, which has been developed initially for light-water-reactor (LWR) lattices whereby fuel elements are arranged in a rectangular array. It has the advantage of not requiring any modification to the full-core diffusion code for its implementation. For LWRs, SPH establishes neutronic equivalence between detailed-geometry heterogeneous fuel-pin cells and homogenized fuel-pin cells by adjusting homogenized multigroup macroscopic cross sections and diffusion coefficients. This work investigates the possible use of the SPH methodology for pressurized heavy-water reactor (PHWR) lattices whose fuel pins are arranged in concentric rings rather than in a rectangular array. Results for single-node (SN) as well as multinode (MN) lattice-calculation models are presented. Results show that, with proper region definition, the SPH methodology can be used for PHWR lattices but that improvement in homogenization accuracy is only marginal compared with SH when comparing results for the same type of lattice model (SN or MN).
    • Download: (7.355Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study of Superhomogenization Applied to PHWR Lattices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275875
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorFerguson, Thomas A.
    contributor authorNichita, Eleodor M.
    date accessioned2022-02-04T22:59:53Z
    date available2022-02-04T22:59:53Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn2332-8983
    identifier otherners_006_01_011109.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275875
    description abstractTo reduce computational expenses, full-core production-type neutronics calculations are customarily performed using a simplified core-model whereby large regions of the core, called nodes, are assumed to be homogeneous. The process of generating the few-group homogenized-node macroscopic cross sections is called lattice homogenization. The simplest homogenization method is standard homogenization (SH) and full-core models based on it do not usually reproduce heterogeneous-core calculations too closely. To improve agreement between node-homogenized core results and heterogeneous-core results, advanced homogenization techniques are used. Such techniques tend to use additional parameters besides homogenized macroscopic cross sections. Superhomogenization (SPH) is an advanced lattice homogenization method, which has been developed initially for light-water-reactor (LWR) lattices whereby fuel elements are arranged in a rectangular array. It has the advantage of not requiring any modification to the full-core diffusion code for its implementation. For LWRs, SPH establishes neutronic equivalence between detailed-geometry heterogeneous fuel-pin cells and homogenized fuel-pin cells by adjusting homogenized multigroup macroscopic cross sections and diffusion coefficients. This work investigates the possible use of the SPH methodology for pressurized heavy-water reactor (PHWR) lattices whose fuel pins are arranged in concentric rings rather than in a rectangular array. Results for single-node (SN) as well as multinode (MN) lattice-calculation models are presented. Results show that, with proper region definition, the SPH methodology can be used for PHWR lattices but that improvement in homogenization accuracy is only marginal compared with SH when comparing results for the same type of lattice model (SN or MN).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Study of Superhomogenization Applied to PHWR Lattices
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4044748
    journal fristpage011109-1
    journal lastpage011109-10
    page10
    treeJournal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian