YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elevated-Temperature Thermal Expansion of PTFE/PEEK Matrix Composite With Random-Oriented Short Carbon Fibers and Graphite Flakes

    Source: Journal of Engineering Materials and Technology:;2020:;volume( 142 ):;issue: 002::page 021002-1
    Author:
    Miyase, A.
    ,
    Qu, S.
    ,
    Lo, K. H.
    ,
    Wang, S. S.
    DOI: 10.1115/1.4045158
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A combined experimental and micromechanics investigation is conducted on elevated-temperature thermal expansion of PTFE/PEEK polymer-matrix composite reinforced with randomly oriented short carbon fibers (CF) and graphite flakes (Gr). In the experimental phase of the study, PTFE/PEEK polymer blends with different amounts of PTFE and four-phase CF/Gr/PTFE/PEEK composites with different volume fractions of graphite flakes were made from compression molding. Scanning electron microscopy was performed to evaluate the microstructure of the PTFE/PEEK matrix and the composite, especially the interface, and the size and dispersion of the particles. X-ray diffraction (XRD) was conducted to provide morphological information on the semi-crystalline PTFE/PEEK matrix of the composite. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were carried out to determine transition temperatures and thermomechanical properties of the composite and its constituent phases at the elevated temperature. Thermal expansions of neat PTFE and neat PEEK, the PTFE/PEEK polymer matrix, and the CF/Gr/PTFE/PEEK composite were obtained with a thermal–mechanical analyzer (TMA) in a dilatometric mode. Coefficients of thermal expansion (CTEs) of the PTFE/PEEK matrix and its CF/Gr/PTFE/PEEK composite were then determined from 25 °C up to an elevated temperature 240 °C. To augment the experimental study, micromechanics analyses are also conducted to determine thermal expansion coefficients of the PTFE/PEEK matrix and the CF/GR/PTFE/PEEK composite. The micromechanics solutions elucidate individual roles of different composite constituents, contributions of individual constituent materials’ temperature-dependent thermal and mechanical properties, the importance of composite microstructure and morphology, and the issue of thermal–mechanical coupling on the thermal expansion behavior of the complex CF/Gr/PTFE/PEEK composite at high temperature.
    • Download: (1.235Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elevated-Temperature Thermal Expansion of PTFE/PEEK Matrix Composite With Random-Oriented Short Carbon Fibers and Graphite Flakes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275576
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorMiyase, A.
    contributor authorQu, S.
    contributor authorLo, K. H.
    contributor authorWang, S. S.
    date accessioned2022-02-04T22:51:20Z
    date available2022-02-04T22:51:20Z
    date copyright4/1/2020 12:00:00 AM
    date issued2020
    identifier issn0094-4289
    identifier othermats_142_2_021002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275576
    description abstractA combined experimental and micromechanics investigation is conducted on elevated-temperature thermal expansion of PTFE/PEEK polymer-matrix composite reinforced with randomly oriented short carbon fibers (CF) and graphite flakes (Gr). In the experimental phase of the study, PTFE/PEEK polymer blends with different amounts of PTFE and four-phase CF/Gr/PTFE/PEEK composites with different volume fractions of graphite flakes were made from compression molding. Scanning electron microscopy was performed to evaluate the microstructure of the PTFE/PEEK matrix and the composite, especially the interface, and the size and dispersion of the particles. X-ray diffraction (XRD) was conducted to provide morphological information on the semi-crystalline PTFE/PEEK matrix of the composite. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were carried out to determine transition temperatures and thermomechanical properties of the composite and its constituent phases at the elevated temperature. Thermal expansions of neat PTFE and neat PEEK, the PTFE/PEEK polymer matrix, and the CF/Gr/PTFE/PEEK composite were obtained with a thermal–mechanical analyzer (TMA) in a dilatometric mode. Coefficients of thermal expansion (CTEs) of the PTFE/PEEK matrix and its CF/Gr/PTFE/PEEK composite were then determined from 25 °C up to an elevated temperature 240 °C. To augment the experimental study, micromechanics analyses are also conducted to determine thermal expansion coefficients of the PTFE/PEEK matrix and the CF/GR/PTFE/PEEK composite. The micromechanics solutions elucidate individual roles of different composite constituents, contributions of individual constituent materials’ temperature-dependent thermal and mechanical properties, the importance of composite microstructure and morphology, and the issue of thermal–mechanical coupling on the thermal expansion behavior of the complex CF/Gr/PTFE/PEEK composite at high temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElevated-Temperature Thermal Expansion of PTFE/PEEK Matrix Composite With Random-Oriented Short Carbon Fibers and Graphite Flakes
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4045158
    journal fristpage021002-1
    journal lastpage021002-10
    page10
    treeJournal of Engineering Materials and Technology:;2020:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian